Global Properties of Eigenvalues of Parametric Rank One Perturbations for Unstructured and Structured Matrices

被引:0
|
作者
André C. M. Ran
Michał Wojtylak
机构
[1] Vrije Universiteit Amsterdam,Afdeling Wiskunde, Faculteit der Exacte Wetenschappen
[2] North West University,Research Focus: Pure and Applied Analytics
[3] Uniwersytet Jagielloński,Instytut Matematyki, Wydział Matematyki i Informatyki
来源
关键词
Eigenvalue perturbation theory; Primary 15A18; 47A55;
D O I
暂无
中图分类号
学科分类号
摘要
General properties of eigenvalues of A+τuv∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A+\tau uv^*$$\end{document} as functions of τ∈C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau \in {\mathbb {C} }$$\end{document} or τ∈R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau \in {\mathbb {R} }$$\end{document} or τ=eiθ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau ={{\,\mathrm{{e}}\,}}^{{{\,\mathrm{{i}}\,}}\theta }$$\end{document} on the unit circle are considered. In particular, the problem of existence of global analytic formulas for eigenvalues is addressed. Furthermore, the limits of eigenvalues with τ→∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau \rightarrow \infty $$\end{document} are discussed in detail. The following classes of matrices are considered: complex (without additional structure), real (without additional structure), complex H-selfadjoint and real J-Hamiltonian.
引用
收藏
相关论文
共 39 条
  • [21] Eigenvalue perturbation theory of symplectic, orthogonal, and unitary matrices under generic structured rank one perturbations
    Mehl, Christian
    Mehrmann, Volker
    Ran, Andre C. M.
    Rodman, Leiba
    BIT NUMERICAL MATHEMATICS, 2014, 54 (01) : 219 - 255
  • [22] Eigenvalue perturbation theory of symplectic, orthogonal, and unitary matrices under generic structured rank one perturbations
    Christian Mehl
    Volker Mehrmann
    André C. M. Ran
    Leiba Rodman
    BIT Numerical Mathematics, 2014, 54 : 219 - 255
  • [23] Eigenvalues of rank-one updated matrices with some applications
    Ding, Jiu
    Zhou, Aihui
    APPLIED MATHEMATICS LETTERS, 2007, 20 (12) : 1223 - 1226
  • [24] Preserving spectral properties of structured matrices under structured perturbations
    Ganai, Tinku
    Adhikari, Bibhas
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2021, 629 : 168 - 191
  • [25] Robust rank preservation of matrices with both structured and unstructured uncertainties and its applications
    Chen, SH
    Chou, JH
    Fong, IK
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART I-JOURNAL OF SYSTEMS AND CONTROL ENGINEERING, 2001, 215 (I5) : 499 - 504
  • [26] Statistical properties of eigenvectors and eigenvalues of structured random matrices
    Truong, K.
    Ossipov, A.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2018, 51 (06)
  • [27] Rank one perturbations of H-positive real matrices
    Fourie, J. H.
    Groenewald, G. J.
    van Rensburg, D. B. Janse
    Ran, A. C. M.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2013, 439 (03) : 653 - 674
  • [28] JORDAN FORMS OF REAL AND COMPLEX MATRICES UNDER RANK ONE PERTURBATIONS
    Mehl, Christian
    Mehrmann, Volker
    Ran, Andre C. M.
    Rodman, Leiba
    OPERATORS AND MATRICES, 2013, 7 (02): : 381 - 398
  • [29] Generic rank-one perturbations of structured regular matrix pencils
    Batzke, Leonhard
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2014, 458 : 638 - 670
  • [30] A note on a conjecture concerning rank one perturbations of singular M-matrices
    Anehila, B.
    Ran, A. C. M.
    QUAESTIONES MATHEMATICAE, 2022, 45 (10) : 1529 - 1537