共 50 条
Transition metal-mediated catalytic properties of gold nanoclusters in aerobic alcohol oxidation
被引:0
|作者:
Chaolei Zhang
Yongdong Chen
Hong Wang
Zhimin Li
Kai Zheng
Shujun Li
Gao Li
机构:
[1] Southwest Petroleum University,College of Chemistry and Chemical Engineering
[2] Chinese Academy of Sciences,Gold Catalysis Research Center, State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics
来源:
关键词:
gold nanoclusters;
heteroatom dopant;
transition metal;
oxidation;
alcohol;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
Heteroatom dopants can greatly modify the electronic and physical properties and catalytic performance of gold nanoclusters. In this study, we investigate the catalytic activity of [Au25−x(PET)18−xM]NH3 (PET = 2-phenylethanethiolate, and M = Cu, Co, Ni, and Zn) nanoclusters in aerobic alcohol oxidation. The [Au25−x(PET)18−xM]NH3 nanoclusters are thoroughly characterized by matrix assisted laser desorption ionization (MALDI) mass spectrometry, X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FT-IR), and inductively coupled plasma–mass spectrometry (ICP-MS). The XPS analyses suggest that the transition metals strongly interact with the gold atoms of the nanoclusters. The CeO2-supported nanoclusters show catalytic activity, based on the conversion of benzyl alcohol, in the order, [Au25−x(PET)18−xNi] > [Au25−x(PET)18−xCu] > [Au25−x(PET)18−xZn] > [Au25−x(PET)18−xCo]. Regarding product selectivity, the [Au25−x(PET)18−xZn] and [Au25−x(PET)18−xCo] catalysts preferably yield benzaldehyde, [Au25−x(PET)18−xCu] yields benzaldehyde and benzyl acid, and [Au25−x(PET)18−xNi] yields benzyl acid. The exposed metal atoms are considered as the catalytic active sites. Also, the catalytic performance (including activity and selectivity) of the [Au25−x(PET)18−xM] catalysts is greatly turned and mediated by the transition metal type.
引用
收藏
页码:2139 / 2148
页数:9
相关论文