Residual attention mechanism and weighted feature fusion for multi-scale object detection

被引:0
|
作者
Jie Zhang
Qiye Qi
Huanlong Zhang
Qifan Du
Fengxian Wang
Xiaoping Shi
机构
[1] Zhengzhou University of Light Industry,College of Electrical and Information Engineering
[2] Harbin Institute of Technology,undefined
来源
关键词
Deep learning; Object detection; Residual attention mechanism; Weighted feature fusion;
D O I
暂无
中图分类号
学科分类号
摘要
Object detection is one of the critical problems in computer vision research, which is also an essential basis for understanding high-level semantic information of images. To improve object detection performance, an improved YOLOv3 multi-scale object detection method is proposed in this article. Firstly, a residual attention module is introduced into the neck of YOLOv3, which includes the channel attention module, spatial attention module, and skip connection. The residual attention module is applied to the three layers of features obtained from the backbone, making the output feature focus on the channels and regions related to the object. Secondly, an additional weight is proposed to add to each input feature in the top-down feature fusion stage of YOLOv3, the size of which is determined by the degree of contribution of each input feature to the output features. The experimental results on KITTI, PASCAL VOC, and bird’s nest datasets fully verify the effectiveness of the proposed method in object detection. The proposed method has significant value in electric power inspection and self-driving automobiles.
引用
收藏
页码:40873 / 40889
页数:16
相关论文
共 50 条
  • [21] Spatial Attention for Multi-Scale Feature Refinement for Object Detection
    Wang, Haoran
    Wang, Zexin
    Jia, Meixia
    Li, Aijin
    Feng, Tuo
    Zhang, Wenhua
    Jiao, Licheng
    2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS (ICCVW), 2019, : 64 - 72
  • [22] A Multi-Feature Fusion and Attention Network for Multi-Scale Object Detection in Remote Sensing Images
    Cheng, Yong
    Wang, Wei
    Zhang, Wenjie
    Yang, Ling
    Wang, Jun
    Ni, Huan
    Guan, Tingzhao
    He, Jiaxin
    Gu, Yakang
    Tran, Ngoc Nguyen
    REMOTE SENSING, 2023, 15 (08)
  • [23] Tomato leaf disease detection based on attention mechanism and multi-scale feature fusion
    Wang, Yong
    Zhang, Panxing
    Tian, Shuang
    FRONTIERS IN PLANT SCIENCE, 2024, 15
  • [24] Exploring Multi-scale Deep Feature Fusion for Object Detection
    Zhang, Quan
    Lai, Jianhuang
    Xie, Xiaohua
    Zhu, Junyong
    PATTERN RECOGNITION AND COMPUTER VISION (PRCV 2018), PT IV, 2018, 11259 : 40 - 52
  • [25] Multi-Scale Feature Fusion Enhancement for Underwater Object Detection
    Xiao, Zhanhao
    Li, Zhenpeng
    Li, Huihui
    Li, Mengting
    Liu, Xiaoyong
    Kong, Yinying
    Sensors, 2024, 24 (22)
  • [26] Surface defect detection of hot rolled steel based on multi-scale feature fusion and attention mechanism residual block
    Hongkai Zhang
    Suqiang Li
    Qiqi Miao
    Ruidi Fang
    Song Xue
    Qianchuan Hu
    Jie Hu
    Sixian Chan
    Scientific Reports, 14
  • [27] Surface defect detection of hot rolled steel based on multi-scale feature fusion and attention mechanism residual block
    Zhang, Hongkai
    Li, Suqiang
    Miao, Qiqi
    Fang, Ruidi
    Xue, Song
    Hu, Qianchuan
    Hu, Jie
    Chan, Sixian
    SCIENTIFIC REPORTS, 2024, 14 (01)
  • [28] Multi-Scale Residual Aggregation Feature Pyramid Network for Object Detection
    Wang, Hongyang
    Wang, Tiejun
    ELECTRONICS, 2023, 12 (01)
  • [29] Detection of Rice Pests Based on Self-Attention Mechanism and Multi-Scale Feature Fusion
    Hu, Yuqi
    Deng, Xiaoling
    Lan, Yubin
    Chen, Xin
    Long, Yongbing
    Liu, Cunjia
    INSECTS, 2023, 14 (03)
  • [30] Electrode defect YOLO detection algorithm based on attention mechanism and multi-scale feature fusion
    Li Y.-W.
    Sun H.-R.
    Hu Y.-M.
    Han Y.-J.
    Kongzhi yu Juece/Control and Decision, 2023, 38 (09): : 2578 - 2586