The Horocycle Flow and the Laplacian on Hyperbolic Surfaces of Infinite Genus

被引:0
|
作者
Omri Sarig
机构
[1] Pennsylvania State University,Mathematics Department
[2] The Weizmann Institute of Science,undefined
来源
关键词
Horocycle flow; infinite genus; Ratner theory; unique ergodicity; infinite invariant measures; Primary: 37D40; 37A40; Secondary: 31C12;
D O I
暂无
中图分类号
学科分类号
摘要
Consider a complete hyperbolic surface which can be partitioned into countably many pairs of pants whose boundary components have lengths less than some constant. We show that any infinite ergodic invariant Radon measure for the horocycle flow is either supported on a single horocycle associated with a cusp, or corresponds canonically to an extremal positive eigenfunction of the Laplace–Beltrami operator.
引用
收藏
页码:1757 / 1812
页数:55
相关论文
共 50 条
  • [41] Veech groups of infinite-genus surfaces
    Ramirez Maluendas, Camilo
    Valdez, Ferran
    ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2017, 17 (01): : 529 - 560
  • [42] Infinite genus surfaces and irrational polygonal billiards
    Valdez, Ferran
    GEOMETRIAE DEDICATA, 2009, 143 (01) : 143 - 154
  • [43] DEGENERATING HYPERBOLIC SURFACES AND SPECTRAL GAPS FOR LARGE GENUS
    Wu, Yunhui
    Zhang, Haohao
    Zhu, Xuwen
    ANALYSIS & PDE, 2024, 17 (04): : 1377 - 1395
  • [44] The horocycle flow at prime times
    Sarnak, Peter
    Ubis, Adrian
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2015, 103 (02): : 575 - 618
  • [45] THE SIMPLE SEPARATING SYSTOLE FOR HYPERBOLIC SURFACES OF LARGE GENUS
    Parlier, Hugo
    Wu, Yunhui
    Xue, Yuhao
    JOURNAL OF THE INSTITUTE OF MATHEMATICS OF JUSSIEU, 2022, 21 (06) : 2205 - 2214
  • [46] Incompressible surfaces, hyperbolic volume, Heegaard genus and homology
    Culler, Marc
    Deblois, Jason
    Shalen, Peter B.
    COMMUNICATIONS IN ANALYSIS AND GEOMETRY, 2009, 17 (02) : 155 - 184
  • [47] The Hyperbolic Geometric Flow on Riemann Surfaces
    Kong, De-Xing
    Liu, Kefeng
    Xu, De-Liang
    COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2009, 34 (06) : 553 - 580
  • [48] LOGARITHMIC SYSTOLIC GROWTH FOR HYPERBOLIC SURFACES IN EVERY GENUS
    Katz, Mikhail g.
    Sabourau, Stephane
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2025, 153 (01) : 325 - 330
  • [49] GROUND-STATE AND LOWEST EIGENVALUE OF THE LAPLACIAN FOR NONCOMPACT HYPERBOLIC SURFACES
    PIGNATARO, T
    SULLIVAN, D
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1986, 104 (04) : 529 - 535
  • [50] INFINITE PERIODIC MINIMAL-SURFACES AND THEIR CRYSTALLOGRAPHY IN THE HYPERBOLIC PLANE
    SADOC, JF
    CHARVOLIN, J
    ACTA CRYSTALLOGRAPHICA SECTION A, 1989, 45 : 10 - 20