Density-based topology optimization for 3D-printable building structures

被引:0
|
作者
Gieljan Vantyghem
Wouter De Corte
Marijke Steeman
Veerle Boel
机构
[1] Ghent University,Department of Structural Engineering
[2] Ghent University,Department of Architecture and Urban Planning
关键词
Topology optimization; 3D printing; Building structures; Homogenization; Thermal insulation; Multi-physics;
D O I
暂无
中图分类号
学科分类号
摘要
This paper presents the study of a new penalty method for density-based topology optimization. The focus is on 3D-printable building structures with optimized stiffness and thermal insulation properties. The first part of the paper investigates the homogenized properties of 3D-printed infill patterns and in the second part a new penalty method is proposed and demonstrated. The method presents an alternative way to implement multi-material topology optimization without increasing computational cost. A single interpolation function is created, based on the homogenized properties of a triangular infill pattern. The design variables are linked to the different possible infill densities of the pattern. A high density represents a solid structure with high stiffness, but weak thermal properties, while an intermediate density provides the structure with good insulation qualities. On the other hand, when the air cavities become too large (i.e., low infill densities), the heat flow by convection and radiation again decreases the thermal performances of the material. The optimization study is performed using the GCMMA algorithm combined with a weighted-sum dual objective. One part of the equation aims to maximize stiffness, while the other attempts to minimize the thermal transmittance. Different case studies are presented to demonstrate the effectiveness of this multi-physics optimization strategy. Results show a series of optimized topologies with a perfect trade-off between structural and thermal efficiency.
引用
收藏
页码:2391 / 2403
页数:12
相关论文
共 50 条
  • [31] Design and Implementation of 3D-Printable Optomechanical Components
    Bullis, Ryan
    Gunderson, Julie
    BIOPHYSICAL JOURNAL, 2019, 116 (03) : 577A - 577A
  • [32] Synthesis and characterization of 3D-printable geopolymeric foams for thermally efficient building envelope materials
    Alghamdi, Hussam
    Neithalath, Narayanan
    CEMENT & CONCRETE COMPOSITES, 2019, 104
  • [33] AutoConnect: Computational Design of 3D-Printable Connectors
    Koyama, Yuki
    Sueda, Shinjiro
    Steinhardt, Emma
    Igarashi, Takeo
    Shamir, Ariel
    Matusile, Wojciech
    ACM TRANSACTIONS ON GRAPHICS, 2015, 34 (06):
  • [34] Reprogrammable, Sustainable, and 3D-Printable Cellulose Hydroplastic
    Koh, J. Justin
    Koh, Xue Qi
    Chee, Jing Yee
    Chakraborty, Souvik
    Tee, Si Yin
    Zhang, Danwei
    Lai, Szu Cheng
    Yeo, Jayven Chee Chuan
    Soh, Jia Wen Jaslin
    Li, Peiyu
    Tan, Swee Ching
    Thitsartarn, Warintorn
    He, Chaobin
    ADVANCED SCIENCE, 2024, 11 (29)
  • [35] Interactive Design of 3D-Printable Robotic Creatures
    Megaro, Vittorio
    Thomaszewski, Bernhard
    Nitri, Maurizio
    Hilliges, Otmar
    Gross, Markus
    Coros, Stelian
    ACM TRANSACTIONS ON GRAPHICS, 2015, 34 (06):
  • [36] 3D-printable biopolymer-based materials for water treatment: A review
    Fijo, Natalia
    Aguilar-Sanchez, Andrea
    Mathew, Aji P.
    CHEMICAL ENGINEERING JOURNAL, 2022, 430
  • [37] 3D-printable biopolymer-based materials for water treatment: A review
    Fijol, Natalia
    Aguilar-Sánchez, Andrea
    Mathew, Aji P.
    Chemical Engineering Journal, 2022, 430
  • [38] Study of Wearable And 3D-Printable Vibration-Based Energy Harvesters
    Garcia-Moreno, P.
    Perez, M. E.
    Estevez, F. J.
    Gloesekoetter, P.
    2016 15TH INTERNATIONAL CONFERENCE ON UBIQUITOUS COMPUTING AND COMMUNICATIONS AND 2016 INTERNATIONAL SYMPOSIUM ON CYBERSPACE AND SECURITY (IUCC-CSS), 2016, : 101 - 108
  • [39] 3D-Printable Nanocellulose-Based Functional Materials: Fundamentals and Applications
    Finny, Abraham Samuel
    Popoola, Oluwatosin
    Andreescu, Silvana
    NANOMATERIALS, 2021, 11 (09)
  • [40] Density-based topology optimization with the Null Space Optimizer: a tutorial and a comparison
    Florian Feppon
    Structural and Multidisciplinary Optimization, 2024, 67