Exceptional characters and prime numbers in short intervals

被引:0
|
作者
John B. Friedlander
Henryk Iwaniec
机构
[1] University of Toronto,Department of Mathematics
[2] Rutgers University,Department of Mathematics
关键词
M20; M55; N08; Primes; intervals; exceptional characters;
D O I
10.1007/s00029-004-0374-6
中图分类号
学科分类号
摘要
Under the assumption of the Riemann hypothesis the asymptotic value y/log x is known to hold for the number of primes in the short interval [x - y, x] for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$y = x^\alpha $$ \end{document} for every fixed \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\alpha < {1\over 2}$$ \end{document}. We show under the assumption of the existence of exceptional Dirichlet characters the same asymptotic formula holds in the shorter intervals, for some \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\alpha < {1\over 2}$$ \end{document} \, in wide ranges of x depending on the characters.
引用
下载
收藏
相关论文
共 50 条