Under the assumption of the Riemann hypothesis the
asymptotic value y/log x is known to hold for the number of
primes in the short interval [x - y, x] for
\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$y = x^\alpha $$
\end{document} for
every fixed
\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$$\alpha < {1\over 2}$$
\end{document}.
We show under the assumption
of the existence of exceptional Dirichlet characters the same
asymptotic formula holds in the shorter intervals, for some
\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$$\alpha < {1\over 2}$$
\end{document}
\, in wide ranges of x depending on the
characters.
机构:
Southern Utah Univ, Dept Math, 351 West Univ Blvd, Cedar City, UT 84720 USASouthern Utah Univ, Dept Math, 351 West Univ Blvd, Cedar City, UT 84720 USA