A new proof of certain littlewood-paley inequalities

被引:0
|
作者
Lucien Chevalier
机构
[1] U.M.R. 5582 C.N.R.S./U.J.F.,Institut Fourier
关键词
42B30; Littlewood-Paley inequalities; Hardy spaces;
D O I
暂无
中图分类号
学科分类号
摘要
The aim of this article is to give a new proof of the Lp-inequalities for the Littlewood-Paley g*-function. Our main tool is a pointwise equality, relating a function f, and the associated functional g*(f), which has the form f2=h(f)+g*2(f), where h(f) is an explicit function. We obtain this equality as a particular case of a more general one, which is reminiscent of a well-known identity in the stochastic calculus setting, namely the Itô formula. Once the above equality is proved, Lp-estimates for g*(f) are obviously equivalent to Lp/2-estimates for h(f). We obtain these last estimates (more precisely, Hp/2-estimates for h(f) by using a slight extension of the Coifman-Meyer-Stein theorem relating the so-called tent-spaces and the Hardy spaces. We observe that our methods clearly show that the restriction p>2n/n+1 is closely related to cancellation and size properties of the gradient of the Poisson kernel.
引用
收藏
页码:189 / 198
页数:9
相关论文
共 50 条
  • [31] A Littlewood-Paley type inequality
    Stevo Stević
    Bulletin of the Brazilian Mathematical Society, 2003, 34 : 211 - 217
  • [32] PROPERTIES OF LITTLEWOOD-PALEY SETS
    HARE, KE
    KLEMES, I
    MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1989, 105 : 485 - 494
  • [33] On multilinear Littlewood-Paley operators
    Chen, Xi
    Xue, Qingying
    Yabuta, Kozo
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2015, 115 : 25 - 40
  • [34] Commutators of Littlewood-Paley operators
    Chen YanPing
    Ding Yong
    SCIENCE IN CHINA SERIES A-MATHEMATICS, 2009, 52 (11): : 2493 - 2505
  • [35] VARIANTS OF LITTLEWOOD-PALEY THEORY
    COWLING, M
    FENDLER, G
    FOURNIER, JJF
    MATHEMATISCHE ANNALEN, 1989, 285 (02) : 333 - 342
  • [36] Remarks on Littlewood-Paley Analysis
    Ho, Kwok-Pun
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2008, 60 (06): : 1283 - 1305
  • [37] Commutators of Littlewood-Paley operators
    CHEN YanPing1 & DING Yong2
    Science China Mathematics, 2009, (11) : 2493 - 2505
  • [38] On generalized Littlewood-Paley functions
    Al-Qassem, H.
    Cheng, L.
    Pan, Y.
    COLLECTANEA MATHEMATICA, 2018, 69 (02) : 297 - 314
  • [39] LITTLEWOOD-PALEY OPERATORS ON BMO
    KURTZ, DS
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1987, 99 (04) : 657 - 666
  • [40] Parabolic Littlewood-Paley operators
    Xue, Qingying
    Ding, Yong
    Yabuta, Kozo
    MATHEMATISCHE NACHRICHTEN, 2009, 282 (01) : 125 - 141