Remarks on multi-fidelity surrogates

被引:0
|
作者
Chanyoung Park
Raphael T. Haftka
Nam H. Kim
机构
[1] University of Florida,Department of Mechanical and Aerospace Engineering
关键词
Multi-fidelity surrogate; Bayesian; Calibration; Discrepancy function;
D O I
暂无
中图分类号
学科分类号
摘要
Different multi-fidelity surrogate (MFS) frameworks have been used for optimization or uncertainty quantification. This paper investigates differences between various MFS frameworks with the aid of examples including algebraic functions and a borehole example. These MFS include three Bayesian frameworks using 1) a model discrepancy function, 2) low fidelity model calibration and 3) a comprehensive approach combining both. Three counterparts in simple frameworks are also included, which have the same functional form but can be built with ready-made surrogates. The sensitivity of frameworks to the choice of design of experiments (DOE) is investigated by repeating calculations with 100 different DOEs. Computational cost savings and accuracy improvement over a single fidelity surrogate model are investigated as a function of the ratio of the sampling costs between low and high fidelity simulations. For the examples considered, MFS frameworks were found to be more useful for saving computational time rather than improving accuracy. For the Hartmann 6 function example, the maximum cost saving for the same accuracy was 86 %, while the maximum accuracy improvement for the same cost was 51 %. It was also found that DOE can substantially change the relative standing of different frameworks. The cross-validation error appears to be a reasonable candidate for estimating poor MFS frameworks for a specific problem but it does not perform well compared to choosing single fidelity surrogates.
引用
收藏
页码:1029 / 1050
页数:21
相关论文
共 50 条
  • [21] Multi-fidelity algorithms for interactive mobile applications
    Satyanarayanan, M
    Narayanan, D
    WIRELESS NETWORKS, 2001, 7 (06) : 601 - 607
  • [22] Multi-fidelity optimization via surrogate modelling
    Forrester, Alexander I. J.
    Sobester, Andras
    Keane, Andy J.
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2007, 463 (2088): : 3251 - 3269
  • [23] Multi-fidelity approach to dynamics model calibration
    Absi, Ghina N.
    Mahadevan, Sankaran
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2016, 68-69 : 189 - 206
  • [24] Multi-fidelity prediction of spatiotemporal fluid flow
    Mondal, Sudeepta
    Sarkar, Soumalya
    PHYSICS OF FLUIDS, 2022, 34 (08)
  • [25] Adaptive Objective Selection for Multi-Fidelity Optimization
    Akimoto, Youhei
    Shimizu, Takuma
    Yamaguchi, Takahiro
    PROCEEDINGS OF THE 2019 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE (GECCO'19), 2019, : 880 - 888
  • [26] Multi-fidelity models for model predictive control
    Kameswaran, Shiva
    Subrahmanya, Niranjan
    11TH INTERNATIONAL SYMPOSIUM ON PROCESS SYSTEMS ENGINEERING, PTS A AND B, 2012, 31 : 1627 - 1631
  • [27] A multi-fidelity approach for possibilistic uncertainty analysis
    Maeck, M.
    Hanss, M.
    PROCEEDINGS OF INTERNATIONAL CONFERENCE ON NOISE AND VIBRATION ENGINEERING (ISMA2018) / INTERNATIONAL CONFERENCE ON UNCERTAINTY IN STRUCTURAL DYNAMICS (USD2018), 2018, : 5081 - 5094
  • [28] Research on multi-fidelity aerodynamic optimization methods
    Huang Likeng
    Gao Zhenghong
    Zhang Dehu
    Chinese Journal of Aeronautics , 2013, (02) : 279 - 286
  • [29] Multi-fidelity approach for transitional boundary layer
    Kima, Minwoo
    Lima, Jiseop
    Jee, Solkeun
    Park, Donghun
    INTERNATIONAL JOURNAL OF HEAT AND FLUID FLOW, 2023, 102
  • [30] Research on multi-fidelity aerodynamic optimization methods
    Huang Likeng
    Gao Zhenghong
    Zhang Dehu
    Chinese Journal of Aeronautics, 2013, 26 (02) : 279 - 286