Near-field radiative heat transfer between parallel structures in the deep subwavelength regime

被引:0
|
作者
St-Gelais R. [1 ,2 ]
Zhu L. [3 ]
Fan S. [3 ]
Lipson M. [1 ,2 ]
机构
[1] School of Electrical and Computer Engineering, Cornell University, Ithaca, 14853, NY
[2] Department of Electrical Engineering, Columbia University, New York, 10027, NY
[3] Ginzton Laboratory, Stanford University, Stanford, 94305, CA
关键词
Breakthrough technology - Electricity generation - Enhancement of heat transfer - Frequency distributions - Heat transfer mechanism - Micro electromechanical system (MEMS) - Orders of magnitude - Radiative heat transfer;
D O I
10.1038/nnano.2016.20
中图分类号
学科分类号
摘要
Thermal radiation between parallel objects separated by deep subwavelength distances and subject to large thermal gradients (>100...K) can reach very high magnitudes, while being concentrated on a narrow frequency distribution. These unique characteristics could enable breakthrough technologies for thermal transport control and electricity generation (for example, by radiating heat exactly at the bandgap frequency of a photovoltaic cell). However, thermal transport in this regime has never been achieved experimentally due to the difficulty of maintaining large thermal gradients over nanometre-scale distances while avoiding other heat transfer mechanisms, namely conduction. Here, we show near-field radiative heat transfer between parallel SiC nanobeams in the deep subwavelength regime. The distance between the beams is controlled by a high-precision micro-electromechanical system (MEMS). We exploit the mechanical stability of nanobeams under high tensile stress to minimize thermal buckling effects, therefore keeping control of the nanometre-scale separation even at large thermal gradients. We achieve an enhancement of heat transfer of almost two orders of magnitude with respect to the far-field limit (corresponding to a 42...nm separation) and show that we can maintain a temperature gradient of 260...K between the cold and hot surfaces at 1/4100...nm distance. © 2016 Macmillan Publishers Limited. All rights reserved.
引用
收藏
页码:515 / 519
页数:4
相关论文
共 50 条
  • [31] NEAR-FIELD RADIATIVE HEAT TRANSFER BETWEEN MATERIALS WITH DIELECTRIC COATINGS
    Fu, Ceji
    Tan, Wenchang
    MICRONANO2008-2ND INTERNATIONAL CONFERENCE ON INTEGRATION AND COMMERCIALIZATION OF MICRO AND NANOSYSTEMS, PROCEEDINGS, 2008, : 413 - 419
  • [32] Near-field radiative heat transfer between shifted graphene gratings
    Luo, Minggang
    Jeyar, Youssef
    Guizal, Brahim
    Antezza, Mauro
    PHYSICAL REVIEW B, 2024, 109 (19)
  • [33] Penetration depth in near-field radiative heat transfer between metamaterials
    Basu, Soumyadipta
    Francoeur, Mathieu
    APPLIED PHYSICS LETTERS, 2011, 99 (14)
  • [34] Near-field radiative heat transfer between nanoporous GaN films
    韩晓政
    张纪红
    刘皓佗
    吴小虎
    冷惠文
    Chinese Physics B, 2024, (04) : 647 - 658
  • [35] Near-field radiative heat transfer between nanoporous GaN films
    Han, Xiaozheng
    Zhang, Jihong
    Liu, Haotuo
    Wu, Xiaohu
    Leng, Huiwen
    CHINESE PHYSICS B, 2024, 33 (04)
  • [36] Effects of spatial dispersion in near-field radiative heat transfer between two parallel metallic surfaces
    Chapuis, Pierre-Olivier
    Volz, Sebastian
    Henkel, Carsten
    Joulain, Karl
    Greffet, Jean-Jacques
    PHYSICAL REVIEW B, 2008, 77 (03):
  • [38] Near-field Radiative Heat Transfer in Graphene/AZO/SiC Composite Structures
    Xu, De-Yu
    Zhao, Jun-Ming
    Liu, Lin-Hua
    Kung Cheng Je Wu Li Hsueh Pao/Journal of Engineering Thermophysics, 2020, 41 (03): : 715 - 721
  • [39] Dynamic measurement of near-field radiative heat transfer
    S. Lang
    G. Sharma
    S. Molesky
    P. U. Kränzien
    T. Jalas
    Z. Jacob
    A. Yu. Petrov
    M. Eich
    Scientific Reports, 7
  • [40] Dynamic measurement of near-field radiative heat transfer
    Lang, S.
    Sharma, G.
    Molesky, S.
    Kraenzien, P. U.
    Jalas, T.
    Jacob, Z.
    Petrov, A. Yu.
    Eich, M.
    SCIENTIFIC REPORTS, 2017, 7