Optimal control problem;
Brinkman equations;
Variational control discretisation;
Discontinuous finite volume methods;
A priori error analysis;
49N05;
49K20;
65N30;
76D07;
76D55;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
We introduce a discontinuous finite volume method for the approximation of distributed optimal control problems governed by the Brinkman equations, where a force field is sought such that it produces a desired velocity profile. The discretisation of state and co-state variables follows a lowest-order scheme, whereas three different approaches are used for the control representation: a variational discretisation, and approximation through piecewise constant and piecewise linear elements. We employ the optimise-then-discretise approach, resulting in a non-symmetric discrete formulation. A priori error estimates for velocity, pressure, and control in natural norms are derived, and a set of numerical examples is presented to illustrate the performance of the method and to confirm the predicted accuracy of the generated approximations under various scenarios.
机构:
Xinjiang Univ, Coll Math & Syst Sci, Urumqi 830046, Peoples R ChinaXinjiang Univ, Coll Math & Syst Sci, Urumqi 830046, Peoples R China
Zhang, Xindan
Zhao, Jianping
论文数: 0引用数: 0
h-index: 0
机构:
Xinjiang Univ, Coll Math & Syst Sci, Urumqi 830046, Peoples R China
Xinjiang Univ, Inst Math & Phys, Urumqi 830046, Peoples R ChinaXinjiang Univ, Coll Math & Syst Sci, Urumqi 830046, Peoples R China
Zhao, Jianping
Hou, Yanren
论文数: 0引用数: 0
h-index: 0
机构:
Xinjiang Univ, Coll Math & Syst Sci, Urumqi 830046, Peoples R China
Xi An Jiao Tong Univ, Sch Math & Stat, Xian 710049, Peoples R ChinaXinjiang Univ, Coll Math & Syst Sci, Urumqi 830046, Peoples R China
机构:
Nanjing Normal Univ, Sch Math Sci, Jiangsu Key Lab NSLSCS, Nanjing 210023, Peoples R ChinaNanjing Normal Univ, Sch Math Sci, Jiangsu Key Lab NSLSCS, Nanjing 210023, Peoples R China
Liu, Wenju
Zhao, Tengjin
论文数: 0引用数: 0
h-index: 0
机构:
Nanjing Normal Univ, Sch Math Sci, Jiangsu Key Lab NSLSCS, Nanjing 210023, Peoples R ChinaNanjing Normal Univ, Sch Math Sci, Jiangsu Key Lab NSLSCS, Nanjing 210023, Peoples R China
Zhao, Tengjin
Ito, Kazufumi
论文数: 0引用数: 0
h-index: 0
机构:
North Carolina State Univ, Dept Math, Raleigh, NC 27695 USANanjing Normal Univ, Sch Math Sci, Jiangsu Key Lab NSLSCS, Nanjing 210023, Peoples R China
Ito, Kazufumi
Zhang, Zhiyue
论文数: 0引用数: 0
h-index: 0
机构:
Nanjing Normal Univ, Sch Math Sci, Jiangsu Key Lab NSLSCS, Nanjing 210023, Peoples R ChinaNanjing Normal Univ, Sch Math Sci, Jiangsu Key Lab NSLSCS, Nanjing 210023, Peoples R China