Interaction between organic molecules and a gold nanoparticle: a quantum chemical topological analysis

被引:0
|
作者
Rika Tandiana
Nguyen-Thi Van-Oanh
Carine Clavaguéra
机构
[1] CNRS,Université Paris
[2] Institut de Chimie Physique,Saclay
[3] UMR8000,undefined
来源
Theoretical Chemistry Accounts | 2021年 / 140卷
关键词
Quantum chemical topology; Gold nanoparticle; Non covalent interactions; DFT;
D O I
暂无
中图分类号
学科分类号
摘要
The ligands at the surface of a gold nanoparticle (GNP) have a significant influence on the optical and physical properties, that may render different functionalities to the GNP. Therefore, there is a need in understanding the nature of the interaction at atomic resolution in order to allow rational design of GNPs with desired physico-chemical properties. The interaction between Au79\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{79}$$\end{document} and a series of small organic molecules has been systematically studied at the quantum mechanical level : methane, methanol, formic acid, hydrogen sulfide, benzene, and ammonia. The reactivity of Au79\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{79}$$\end{document} has been first analyzed by performing the condensed Fukui analysis to emphasize that the surface of Au79\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{79}$$\end{document} is dominated by electrophilic sites, with higher reactivity at the corner and edge atoms. The net charge transfer flowing from the organic molecules toward Au79\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{79}$$\end{document} comes from the electrophilic behavior of the GNP. Furthermore, the shape of the frontier molecular orbitals of Au79\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{79}$$\end{document} and of the incoming organic molecules has been found to dictate the preferred orientation of the adsorption. Several quantum chemical topological analyses of the electron density have been performed to further classify the interactions to weak dispersive or van der Waals interactions in methane and stronger non-covalent interactions in ammonia, benzene, hydrogen sulfide, methanol, and formic acid. The analysis of the electron localization function (ELF), on the other hand, provides more insight about the charge transfer, as the population of the basins of the organic molecules has decreased after interacting with Au79\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{79}$$\end{document}.
引用
收藏
相关论文
共 50 条
  • [21] Making quantum state by the interaction between lasers and molecules
    Zhang, Dengyu
    Jiguang Zazhi/Laser Journal, 2000, 21 (01): : 27 - 29
  • [23] Quantum chemistry calculations on the interaction between kaolinite and gold
    Min, XM
    Hong, HL
    An, JM
    JOURNAL OF WUHAN UNIVERSITY OF TECHNOLOGY-MATERIALS SCIENCE EDITION, 2001, 16 (04): : 57 - 61
  • [24] Quantum chemistry calculations on the interaction between kaolinite and gold
    Min, Xin-min
    Hong, Han-lie
    An, Ji-ming
    Journal Wuhan University of Technology, Materials Science Edition, 2001, 16 (04): : 57 - 61
  • [25] Gold nanoparticle wire and integrated wire array for electronic detection of chemical and biological molecules
    Diao, J. J.
    Cao, Qing
    AIP ADVANCES, 2011, 1 (01):
  • [26] Interaction between topological photonic crystal nanocavity and quantum dots
    Xie, Xin
    Zhang, Weixuan
    He, Xiaowu
    Hao, Huiming
    Dang, Jianchen
    Wu, Shiyao
    Peng, Kai
    Song, Feilong
    Xiao, Shan
    Shi, Shushu
    Yang, Longlong
    Ni, Haiqiao
    Niu, Zhichuan
    Wang, Can
    Jin, Kuijuan
    Zhang, Xiangdong
    Xu, Xiulai
    2020 ASIA COMMUNICATIONS AND PHOTONICS CONFERENCE (ACP) AND INTERNATIONAL CONFERENCE ON INFORMATION PHOTONICS AND OPTICAL COMMUNICATIONS (IPOC), 2020,
  • [27] Gold nanoparticle-enabled biological and chemical detection and analysis
    Jans, Hilde
    Huo, Qun
    CHEMICAL SOCIETY REVIEWS, 2012, 41 (07) : 2849 - 2866
  • [28] In-depth theoretical understanding of the chemical interaction of aromatic compounds with a gold nanoparticle
    Tandiana, Rika
    Sicard-Roselli, Cecile
    Van-Oanh, Nguyen-Thi
    Steinmann, Stephan
    Clavaguera, Carine
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2022, 24 (41) : 25327 - 25336
  • [29] The Quantum-Chemical Study of Small Clusters of Organic Chromophores: Topological Analysis and Nonlinear Optical Properties
    Balakina, Marina Yu.
    Fominykh, Olga D.
    INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 2008, 108 (14) : 2678 - 2692
  • [30] INTERACTION BETWEEN AN ISOTROPIC NANOPARTICLE AND DRIFTING ELECTRONS IN A QUANTUM WELL
    Kochelap, V. A.
    Kukhtaruk, S. M.
    UKRAINIAN JOURNAL OF PHYSICS, 2012, 57 (03): : 367 - 380