Spanning simple path inside a simple polygon

被引:0
|
作者
Abdolah Sepahvand
Mohammadreza Razzazi
机构
[1] Amirkabir University of Technology,Department of Computer Engineering
来源
关键词
Hamiltonian path; NP-complete; Orthogonal spiral polygon; Simple Path;
D O I
暂无
中图分类号
学科分类号
摘要
Given a set S of n colored points of m colors inside a simple polygon P, each point within the polygon has a specific color that is not necessarily unique, i.e., they may exhibit the same color. The study aims to find a simple path that traverses at least one point of each color using a set of S points contained within a simple polygon P. Two results are presented in this study. First, we demonstrate that finding such simple paths inside a simple polygon is an NP-complete\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$NP-complete$$\end{document} problem. Moreover, we provide a polynomial-time algorithm that computes the simple path when P is an orthogonal spiral simple polygon, and our objective is to locate a simple Hamiltonian path L using all points of S inside P. Our algorithm has a time complexity of O(r+rn4)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(r+rn^4)$$\end{document}, where r is the number of reflex vertices in P and n is the number of points in S.
引用
收藏
页码:2740 / 2766
页数:26
相关论文
共 50 条
  • [21] TRIANGULATING A SIMPLE POLYGON
    GAREY, MR
    JOHNSON, DS
    PREPARATA, FP
    TARJAN, RE
    INFORMATION PROCESSING LETTERS, 1978, 7 (04) : 175 - 179
  • [22] Guarding in a simple polygon
    Lu, BK
    Hsu, FR
    Tang, CY
    INFORMATION PROCESSING LETTERS, 2000, 75 (04) : 153 - 158
  • [23] Constant-Work-Space Algorithm for a Shortest Path in a Simple Polygon
    Asano, Tetsuo
    Mulzer, Wolfgang
    Wang, Yajun
    WALCOM: ALGORITHMS AND COMPUTATION, PROCEEDINGS, 2010, 5942 : 9 - +
  • [24] Some Results on Minimum Discrete Bending Energy Path in Simple Polygon
    Xie, Yulai
    COMPUTER JOURNAL, 2011, 54 (07): : 1205 - 1210
  • [25] Computing a shortest watchman path in a simple polygon in polynomial-time
    Carlsson, S
    Jonsson, H
    ALGORITHMS AND DATA STRUCTURES, 1995, 955 : 122 - 134
  • [26] A NEW DATA STRUCTURE FOR SHORTEST-PATH QUERIES IN A SIMPLE POLYGON
    HERSHBERGER, J
    INFORMATION PROCESSING LETTERS, 1991, 38 (05) : 231 - 235
  • [27] A linear time algorithm for minimum conic link path in a simple polygon
    Chou, Shuo-Yan
    Chou, Chang-Chien
    EXPERT SYSTEMS WITH APPLICATIONS, 2016, 45 : 286 - 293
  • [28] Optimally computing a shortest weakly visible line segment inside a simple polygon
    Bhattacharya, BK
    Das, G
    Mukhopadhyay, A
    Narasimhan, G
    COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 2002, 23 (01): : 1 - 29
  • [29] A Simple Matlab Code for Finding the Kernel of a Simple Polygon
    Mazzia, Annamaria
    SSRN,
  • [30] CIRCLE SHOOTING IN A SIMPLE POLYGON
    AGARWAL, PK
    SHARIR, M
    JOURNAL OF ALGORITHMS-COGNITION INFORMATICS AND LOGIC, 1993, 14 (01): : 69 - 87