The Neumann Problem for a Second-Order Singular System

被引:0
|
作者
Yu. A. Klokov
机构
[1] University of Latvia,Institute of Mathematics and Computer Science
来源
Differential Equations | 2003年 / 39卷
关键词
Differential Equation; Partial Differential Equation; Ordinary Differential Equation; Functional Equation; Neumann Problem;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:31 / 35
页数:4
相关论文
共 50 条
  • [31] On the numerical solution of a singular second-order thermoelastic system
    Mesloub, Said
    Obaidat, Saleem
    ADVANCES IN MECHANICAL ENGINEERING, 2017, 9 (05):
  • [32] Positive solutions for second-order superlinear repulsive singular Neumann boundary value problems
    Jifeng Chu
    Xiaoning Lin
    Daqing Jiang
    Donal O’Regan
    Ravi P. Agarwal
    Positivity, 2008, 12 : 555 - 569
  • [33] Positive solutions for second-order superlinear repulsive singular Neumann boundary value problems
    Chu, Jifeng
    Lin, Xiaoning
    Jiang, Daqing
    O'Regan, Donal
    Agarwal, Ravi P.
    POSITIVITY, 2008, 12 (03) : 555 - 569
  • [34] On a Control Problem for a Nonlinear Second-Order System
    Blizorukova, M. S.
    PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2014, 287 : S22 - S28
  • [35] On a control problem for a nonlinear second-order system
    M. S. Blizorukova
    Proceedings of the Steklov Institute of Mathematics, 2014, 287 : 22 - 28
  • [36] On a control problem of a nonlinear second-order system
    Blizorukova, M. S.
    TRUDY INSTITUTA MATEMATIKI I MEKHANIKI URO RAN, 2013, 19 (04): : 25 - 31
  • [37] Pole assignment problem for a second-order system
    E. A. Perepelkin
    Differential Equations, 2017, 53 : 1524 - 1527
  • [38] Pole assignment problem for a second-order system
    Perepelkin, E. A.
    DIFFERENTIAL EQUATIONS, 2017, 53 (11) : 1524 - 1527
  • [39] THREE POSITIVE SOLUTIONS TO SECOND-ORDER IMPULSIVE NEUMANN BOUNDARY VALUE PROBLEM
    Sanhui Liu
    Jianli Li
    Annals of Applied Mathematics, 2013, (03) : 288 - 294
  • [40] The existence of solutions for a second-order discrete Neumann problem with a p-Laplacian
    Tian Y.
    Ge W.
    J. Appl. Math. Comp., 2008, 1-2 (333-340): : 333 - 340