Thermalization in weakly coupled nonabelian plasmas

被引:0
|
作者
Aleksi Kurkela
Guy D. Moore
机构
[1] McGill University,Department of Physics
来源
Journal of High Energy Physics | / 2011卷
关键词
Thermal Field Theory; QCD;
D O I
暂无
中图分类号
学科分类号
摘要
We investigate how relativistic, nonabelian plasmas approach equilibrium in a general context. Our treatment is entirely parametric and for small Yang-Mills coupling α. First we study isotropic systems with an initially nonequilibrium momentum distribution. We consider both the case of initially very high occupancy and initially very low occupancy. Then we consider systems which are anisotropic. We consider both weak anisotropy and large anisotropy, and allow the occupancy to be parametrically large or small. Writing the typical momentum of an initial excitation as Q and the final temperature as Tfinal, full equilibration occurs in a time \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ {t_{\text{eq}}} \sim {\alpha^{{ - {2}}}}T_{\text{final}}^{{ - 1}} $\end{document} for Tfinal > Q, and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ {t_{\text{eq}}} \sim {\alpha^{{ - 2}}}{Q^{{\frac{1}{2}}}}T_{\text{final}}^{{\frac{{ - 3}}{2}}} $\end{document} for Tfinal < Q, unless the initial system is sufficiently anisotropic and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ {T_{\text{final}}} > {\alpha^{{\frac{2}{3}}}}Q $\end{document}, in which 7 case equilibration occurs somewhat faster, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ {t_{\text{eq}}} \sim \max \left( {{a^{{ - 2}}}{T^{{ - 1}}},\;{\alpha^{{\frac{{ - 13}}{7}}}}{Q^{{\frac{5}{7}}}}T_{\text{final}}^{{\frac{{ - 12}}{7}}}} \right) $\end{document}.
引用
收藏
相关论文
共 50 条
  • [21] Approach to Equilibrium in Weakly Coupled Non-Abelian Plasmas
    Kurkela, Aleksi
    Lu, Egang
    PHYSICAL REVIEW LETTERS, 2014, 113 (18)
  • [22] Transition wavelengths for helium atom in weakly coupled hot plasmas
    Kar, Sabyasachi
    Ho, Y. K.
    JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER, 2007, 107 (02): : 315 - 322
  • [23] THERMALIZATION OF TEST PARTICLES IN PLASMAS
    HUSSEINY, AA
    SABRI, ZA
    PHYSICAL REVIEW A, 1974, 10 (02) : 644 - 656
  • [24] Coupled mode effects on energy transfer in weakly coupled, two-temperature plasmas
    Vorberger, J.
    Gericke, D. O.
    PHYSICS OF PLASMAS, 2009, 16 (08)
  • [25] Classical electron-ion Coulomb bremsstrahlung in weakly coupled plasmas
    Jung, YD
    Yang, KS
    ASTROPHYSICAL JOURNAL, 1997, 479 (02): : 912 - 917
  • [26] PLASMA MODE OF WEAKLY AND STRONGLY COUPLED ONE-COMPONENT PLASMAS
    BAUS, M
    PHYSICAL REVIEW A, 1977, 15 (02): : 790 - 801
  • [27] Third harmonic Brillouin scattering of laser in weakly and strongly coupled plasmas
    Vahedi, A.
    Paknezhad, A.
    Kouhi, M.
    OPTIK, 2016, 127 (05): : 2890 - 2894
  • [28] Scattering of slow electrons by hydrogen atoms in weakly coupled Debye plasmas
    Ghoshal, Arijit
    Ho, Y. K.
    JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 2010, 43 (04)
  • [29] The nonabelian plasma is chaotic egenstate thermalization in SU(2) gauge theory
    Mueller, Berndt
    Ebner, Lukas
    Schaefer, Andreas
    Seidl, Clemens
    Yao, Xiaojun
    EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2025,
  • [30] ELECTRON THERMALIZATION AND HEATING IN RELATIVISTIC PLASMAS
    DERMER, CD
    LIANG, EP
    ASTROPHYSICAL JOURNAL, 1989, 339 (01): : 512 - 528