Thermalization in weakly coupled nonabelian plasmas

被引:0
|
作者
Aleksi Kurkela
Guy D. Moore
机构
[1] McGill University,Department of Physics
关键词
Thermal Field Theory; QCD;
D O I
暂无
中图分类号
学科分类号
摘要
We investigate how relativistic, nonabelian plasmas approach equilibrium in a general context. Our treatment is entirely parametric and for small Yang-Mills coupling α. First we study isotropic systems with an initially nonequilibrium momentum distribution. We consider both the case of initially very high occupancy and initially very low occupancy. Then we consider systems which are anisotropic. We consider both weak anisotropy and large anisotropy, and allow the occupancy to be parametrically large or small. Writing the typical momentum of an initial excitation as Q and the final temperature as Tfinal, full equilibration occurs in a time \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ {t_{\text{eq}}} \sim {\alpha^{{ - {2}}}}T_{\text{final}}^{{ - 1}} $\end{document} for Tfinal > Q, and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ {t_{\text{eq}}} \sim {\alpha^{{ - 2}}}{Q^{{\frac{1}{2}}}}T_{\text{final}}^{{\frac{{ - 3}}{2}}} $\end{document} for Tfinal < Q, unless the initial system is sufficiently anisotropic and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ {T_{\text{final}}} > {\alpha^{{\frac{2}{3}}}}Q $\end{document}, in which 7 case equilibration occurs somewhat faster, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ {t_{\text{eq}}} \sim \max \left( {{a^{{ - 2}}}{T^{{ - 1}}},\;{\alpha^{{\frac{{ - 13}}{7}}}}{Q^{{\frac{5}{7}}}}T_{\text{final}}^{{\frac{{ - 12}}{7}}}} \right) $\end{document}.
引用
收藏
相关论文
共 50 条
  • [1] Thermalization in weakly coupled nonabelian plasmas
    Kurkela, Aleksi
    Moore, Guy D.
    JOURNAL OF HIGH ENERGY PHYSICS, 2011, (12):
  • [2] Turbulent thermalization of weakly coupled non-Abelian plasmas
    Schlichting, Soeren
    PHYSICAL REVIEW D, 2012, 86 (06):
  • [3] THERMALIZATION OF WEAKLY COUPLED NON-ABELIAN PLASMAS AT NEXT-TO-LEADING ORDER
    Fu, Yu
    Ghiglieri, Jacopo
    Iqbal, Shahin
    Kurkela, Aleksi
    ACTA PHYSICA POLONICA B PROCEEDINGS SUPPLEMENT, 2023, 16 (01)
  • [4] Equilibration of weakly coupled QCD plasmas
    Du, Xiaojian
    Schlichting, Soeren
    PHYSICAL REVIEW D, 2021, 104 (05)
  • [5] Inverse bremsstrahlung of hot, weakly coupled plasmas
    Wierling, A
    Millat, T
    Röpke, G
    Redmer, R
    Reinholz, H
    PHYSICS OF PLASMAS, 2001, 8 (08) : 3810 - 3819
  • [6] Screened wannier exponent in weakly coupled plasmas
    Jung, YD
    PHYSICA SCRIPTA, 2005, 72 (2-3) : 237 - 239
  • [7] Quarkonium transport in weakly and strongly coupled plasmas
    Nijs, Govert
    Scheihing-Hitschfeld, Bruno
    Yao, Xiaojun
    30TH INTERNATIONAL CONFERENCE ON ULTRA-RELATIVISTIC NUCLEUS-NUCLEUS COLLISIONS, QUARK MATTER 2023, 2024, 296
  • [8] Closing in on stark broadening for weakly coupled plasmas
    Alexiou, S
    SPECTRAL LINE SHAPES, VOL 9 - 13TH ICSLS, 1997, (386): : 79 - 98
  • [9] Equation of state for weakly coupled quantum plasmas
    Vorberger, J
    Schlanges, M
    Kraeft, WD
    PHYSICAL REVIEW E, 2004, 69 (04): : 8
  • [10] Equilibrium properties of weakly coupled magnetized plasmas
    Steinberg, M
    Ortner, J
    Ebeling, W
    STRONGLY COUPLED COULOMB SYSTEMS, 1998, : 473 - 477