Expression of protein engineered NADP+-dependent xylitol dehydrogenase increases ethanol production from xylose in recombinant Saccharomyces cerevisiae

被引:5
|
作者
Akinori Matsushika
Seiya Watanabe
Tsutomu Kodaki
Keisuke Makino
Hiroyuki Inoue
Katsuji Murakami
Osamu Takimura
Shigeki Sawayama
机构
[1] National Institute of Advanced Industrial Science and Technology,Biomass Technology Research Center
[2] Kyoto University,Institute of Advanced Energy
来源
关键词
Xylitol dehydrogenase; Coenzyme specificity; Xylose fermentation; Ethanol production;
D O I
暂无
中图分类号
学科分类号
摘要
A recombinant Saccharomyces cerevisiae strain transformed with xylose reductase (XR) and xylitol dehydrogenase (XDH) genes from Pichia stipitis has the ability to convert xylose to ethanol together with the unfavorable excretion of xylitol, which may be due to cofactor imbalance between NADPH-preferring XR and NAD+-dependent XDH. To reduce xylitol formation, we have already generated several XDH mutants with a reversal of coenzyme specificity toward NADP+. In this study, we constructed a set of recombinant S. cerevisiae strains with xylose-fermenting ability, including protein-engineered NADP+-dependent XDH-expressing strains. The most positive effect on xylose-to-ethanol fermentation was found by using a strain named MA-N5, constructed by chromosomal integration of the gene for NADP+-dependent XDH along with XR and endogenous xylulokinase genes. The MA-N5 strain had an increase in ethanol production and decrease in xylitol excretion compared with the reference strain expressing wild-type XDH when fermenting not only xylose but also mixed sugars containing glucose and xylose. Furthermore, the MA-N5 strain produced ethanol with a high yield of 0.49 g of ethanol/g of total consumed sugars in the nonsulfuric acid hydrolysate of wood chips. The results demonstrate that glucose and xylose present in the lignocellulosic hydrolysate can be efficiently fermented by this redox-engineered strain.
引用
收藏
页码:243 / 255
页数:12
相关论文
共 50 条
  • [21] Elevation of glucose 6-phosphate dehydrogenase activity increases xylitol production in recombinant Saccharomyces cerevisiae
    Kwon, Do-Hyun
    Kim, Myoung-Dong
    Lee, Tae-Hee
    Oh, Yong-Joc
    Ryu, Yeon-Woo
    Seo, Jin-Ho
    JOURNAL OF MOLECULAR CATALYSIS B-ENZYMATIC, 2006, 43 (1-4) : 86 - 89
  • [22] Enhanced xylose fermentation and ethanol production by engineered Saccharomyces cerevisiae strain
    Leonardo de Figueiredo Vilela
    Verônica Parente Gomes de Araujo
    Raquel de Sousa Paredes
    Elba Pinto da Silva Bon
    Fernando Araripe Gonçalves Torres
    Bianca Cruz Neves
    Elis Cristina Araújo Eleutherio
    AMB Express, 5
  • [23] Effects of NADH-preferring xylose reductase expression on ethanol production from xylose in xylose-metabolizing recombinant Saccharomyces cerevisiae
    Lee, Sung-Haeng
    Kodaki, Tsutomu
    Park, Yong-Cheol
    Seo, Jin-Ho
    JOURNAL OF BIOTECHNOLOGY, 2012, 158 (04) : 184 - 191
  • [24] Co-expression of xylose reductase gene from Candida shehatae and endogenous xylitol dehydrogenase gene in Saccharomyces cerevisiae and the effect of metabolizing xylose to ethanol
    Zhang, Jinxin
    Yang, Min
    Tian, Shen
    Zhang, Yazhen
    Yang, Xiushan
    APPLIED BIOCHEMISTRY AND MICROBIOLOGY, 2010, 46 (04) : 415 - 420
  • [25] High expression of XYL2 coding for xylitol dehydrogenase is necessary for efficient xylose fermentation by engineered Saccharomyces cerevisiae
    Kim, Soo Rin
    Ha, Suk-Jin
    Kong, In Iok
    Jin, Yong-Su
    METABOLIC ENGINEERING, 2012, 14 (04) : 336 - 343
  • [26] Co-expression of xylose reductase gene from Candida shehatae and endogenous xylitol dehydrogenase gene in Saccharomyces cerevisiae and the effect of metabolizing xylose to ethanol
    Jinxin Zhang
    Min Yang
    Shen Tian
    Yazhen Zhang
    Xiushan Yang
    Applied Biochemistry and Microbiology, 2010, 46 : 415 - 420
  • [27] Ethanol production from xylose in engineered Saccharomyces cerevisiae strains: current state and perspectives
    Akinori Matsushika
    Hiroyuki Inoue
    Tsutomu Kodaki
    Shigeki Sawayama
    Applied Microbiology and Biotechnology, 2009, 84 : 37 - 53
  • [28] Ethanol production from xylose in engineered Saccharomyces cerevisiae strains: current state and perspectives
    Matsushika, Akinori
    Inoue, Hiroyuki
    Kodaki, Tsutomu
    Sawayama, Shigeki
    APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2009, 84 (01) : 37 - 53
  • [29] Improvements in ethanol production from xylose by mating recombinant xylose-fermenting Saccharomyces cerevisiae strains
    Kato, Hiroko
    Suyama, Hiroaki
    Yamada, Ryosuke
    Hasunuma, Tomohisa
    Kondo, Akihiko
    APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2012, 94 (06) : 1585 - 1592
  • [30] Improvements in ethanol production from xylose by mating recombinant xylose-fermenting Saccharomyces cerevisiae strains
    Hiroko Kato
    Hiroaki Suyama
    Ryosuke Yamada
    Tomohisa Hasunuma
    Akihiko Kondo
    Applied Microbiology and Biotechnology, 2012, 94 : 1585 - 1592