Existence and regularity of solutions for semilinear fractional Rayleigh-Stokes equations

被引:1
|
作者
Jiang, Yiming [1 ]
Ren, Jingchuang [2 ]
Wei, Yawei [1 ]
机构
[1] LPMC Nankai Univ, Sch Math Sci, Tianjin 300071, Peoples R China
[2] Nankai Univ, Sch Math Sci, Tianjin 300071, Peoples R China
来源
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK | 2024年 / 75卷 / 03期
基金
中国国家自然科学基金;
关键词
Existence; Regularity; Mild solution; Rayleigh-Stokes problem; Riemann-Liouville derivative; TIME;
D O I
10.1007/s00033-024-02251-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper deals with the semilinear Rayleigh-Stokes equation with the fractional derivative in time of order alpha is an element of(0,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha \in (0,1)$$\end{document}, which can be used to model anomalous diffusion in viscoelastic fluids. An operator family related to this problem is defined, and its regularity properties are investigated. We firstly give the concept of the mild solutions in terms of the operator family and then obtain the existence of global mild solutions by means of fixed point technique. Moreover, the existence and regularity of classical solutions are given.
引用
收藏
页数:23
相关论文
共 50 条