Impact of gene expression data pre-processing on expression quantitative trait locus mapping

被引:0
|
作者
Aurelie Labbe
Marie-Paule Roth
Pierre-Hugues Carmichael
Maria Martinez
机构
[1] Université Laval,Département de Mathématiques et de Statistique
[2] Centre de Recherche Université Laval Robert Giffard,undefined
[3] INSERM U563,undefined
[4] Centre de Physiopathologic de Toulouse Purpan Toulouse,undefined
[5] F-31300,undefined
[6] France; Université Toulouse,undefined
关键词
Linkage Signal; Background Correction; Concordance Rate; Linkage Peak; Expression Quantitative Trait Locus;
D O I
10.1186/1753-6561-1-S1-S153
中图分类号
学科分类号
摘要
We evaluate the impact of three pre-processing methods for Affymetrix microarray data on expression quantitative trait locus (eQTL) mapping, using 14 CEPH Utah families (GAW Problem 1 data). Different sets of expression traits were chosen according to different selection criteria: expression level, variance, and heritability. For each gene, three expression phenotypes were obtained by different pre-processing methods. Each quantitative phenotype was then submitted to a whole-genome scan, using multipoint variance component LODs. Pre-processing methods were compared with respect to their linkage outcomes (number of linkage signals with LODs greater than 3, consistencies in the location of the trait-specific linkage signals, and type of cis/trans-regulating loci). Overall, we found little agreement between linkage results from the different pre-processing methods: most of the linkage signals were specific to one pre-processing method. However, agreement rates varied according to the criteria used to select the traits. For instance, these rates were higher in the set of the most heritable traits. On the other hand, the pre-processing method had little impact on the relative proportion of detected cis and trans-regulating loci. Interestingly, although the number of detected cis-regulating loci was relatively small, pre-processing methods agreed much better in this set of linkage signals than in the trans-regulating loci. Several potential factors explaining the discordance observed between the methods are discussed.
引用
收藏
相关论文
共 50 条
  • [11] The Dissection of Expression Quantitative Trait Locus Hotspots
    Tian, Jianan
    Keller, Mark P.
    Broman, Aimee Teo
    Kendziorski, Christina
    Yandell, Brian S.
    Attie, Alan D.
    Broman, Karl W.
    GENETICS, 2016, 202 (04) : 1563 - +
  • [12] Identification of pathways for atherosclerosis in mice - Integration of quantitative trait locus analysis and global gene expression data
    Wang, Susanna S.
    Schadt, Eric E.
    Wang, Hui
    Wang, Xuping
    Ingram-Drake, Leslie
    Shi, Weibin
    Drake, Thomas A.
    Lusis, Aldons J.
    CIRCULATION RESEARCH, 2007, 101 (03) : E11 - E30
  • [13] StickWRLD as an Interactive Visual Pre-Filter for Canceromics-Centric Expression Quantitative Trait Locus Data
    Rumpf, Robert Wolfgang
    Wolock, Samuel L.
    Ray, William C.
    CANCER INFORMATICS, 2014, 13 : 63 - 69
  • [14] Quantitative trait associated microarray gene expression data analysis
    Qu, Yi
    Xu, Shizhong
    MOLECULAR BIOLOGY AND EVOLUTION, 2006, 23 (08) : 1558 - 1573
  • [15] DIGITAL SOIL MAPPING: STRATEGY FOR DATA PRE-PROCESSING
    Ten Caten, Alexandre
    Diniz Dalmolin, Ricardo Simao
    Chimelo Ruiz, Luis Fernando
    REVISTA BRASILEIRA DE CIENCIA DO SOLO, 2012, 36 (04): : 1083 - 1091
  • [16] Brain expression quantitative trait locus mapping informs genetic studies of psychiatric diseases
    Liu, Chunyu
    NEUROSCIENCE BULLETIN, 2011, 27 (02) : 123 - 133
  • [17] Optimizing expression quantitative trait locus mapping workflows for single-cell studies
    Anna S. E. Cuomo
    Giordano Alvari
    Christina B. Azodi
    Davis J. McCarthy
    Marc Jan Bonder
    Genome Biology, 22
  • [18] Optimizing expression quantitative trait locus mapping workflows for single-cell studies
    Cuomo, Anna S. E.
    Alvari, Giordano
    Azodi, Christina B.
    McCarthy, Davis J.
    Bonder, Marc Jan
    GENOME BIOLOGY, 2021, 22 (01)
  • [19] Digital soil mapping: Strategy for data pre-processing
    ten Caten, Alexandre
    Diniz Dalmolin, Ricardo Simao
    Chimelo Ruiz, Luis Fernando
    Mendonca-Santos, Maria de Lourdes
    DIGITAL SOIL ASSESSMENTS AND BEYOND, 2012, : 193 - 196
  • [20] Expression quantitative trait locus fine mapping of the 17q12-21 asthma locus in African American children: a genetic association and gene expression study
    Ober, Carole
    McKennan, Chris G.
    Magnaye, Kevin M.
    Altman, Matthew C.
    Washington, Charles
    Stanhope, Catherine
    Naughton, Katherine A.
    Rosasco, Mario G.
    Bacharier, Leonard B.
    Billheimer, Dean
    Gold, Diane R.
    Gress, Lisa
    Hartert, Tina
    Havstad, Suzanne
    Hershey, Gurjit K. Khurana
    Hallmark, Brian
    Hogarth, D. Kyle
    Jackson, Daniel J.
    Johnson, Christine C.
    Kattan, Meyer
    Lemanske, Robert F.
    Lynch, Susan, V
    Mendonca, Eneida A.
    Miller, Rachel L.
    Naureckas, Edward T.
    O'Connor, George T.
    Seroogy, Christine M.
    Wegienka, Ganesa
    White, Steven R.
    Wood, Robert A.
    Wright, Anne L.
    Zoratti, Edward M.
    Martinez, Fernando D.
    Ownby, Dennis
    Nicolae, Dan L.
    Levin, Albert M.
    Gern, James E.
    LANCET RESPIRATORY MEDICINE, 2020, 8 (05): : 482 - 492