Optimal L ∞ error estimates for finite element Galerkin methods for nonlinear evolution equations

被引:5
|
作者
Omrani K. [1 ]
机构
[1] Institut Supérieur des Sciences Appliquées et de Technologie de Sousse
关键词
Convergence; Crank-Nicolson scheme; Existence; Extrapolation; Galerkin method; Linearization; Uniqueness;
D O I
10.1007/s12190-007-0018-z
中图分类号
学科分类号
摘要
Finite element Galerkin solutions for three classes of nonlinear evolution equations are considered. The existence, uniqueness and convergence of the fully discrete Crank-Nicolson scheme are discussed. At last a linearized Galerkin approximation is presented, which is also second order accurate in time fully discrete scheme. © 2008 The Author(s).
引用
收藏
页码:247 / 262
页数:15
相关论文
共 50 条
  • [1] Optimal Strong Error Estimates for Galerkin Finite Element Methods
    Kruse, Raphael
    [J]. STRONG AND WEAK APPROXIMATION OF SEMILINEAR STOCHASTIC EVOLUTION EQUATIONS, 2014, 2093 : 51 - 84
  • [2] Optimal error estimates of Galerkin finite element methods for stochastic partial differential equations with multiplicative noise
    Kruse, Raphael
    [J]. IMA JOURNAL OF NUMERICAL ANALYSIS, 2014, 34 (01) : 217 - 251
  • [3] A PRIORI L~2 ERROR ESTIMATES FOR GALERKIN METHODS FOR NONLINEAR SOBOLEV EQUATIONS
    林延平
    [J]. Journal of Systems Science & Complexity, 1990, (02) : 126 - 135
  • [4] A Posteriori Error Estimates for Finite Element Methods for Systems of Nonlinear, Dispersive Equations
    Karakashian, Ohannes A.
    Wise, Michael M.
    [J]. COMMUNICATIONS ON APPLIED MATHEMATICS AND COMPUTATION, 2022, 4 (03) : 823 - 854
  • [5] Error estimates of finite element methods for nonlinear fractional stochastic differential equations
    Zhang, Yanpeng
    Yang, Xiaoyuan
    Li, Xiaocui
    [J]. ADVANCES IN DIFFERENCE EQUATIONS, 2018,
  • [6] Error estimates of finite element methods for nonlinear fractional stochastic differential equations
    Yanpeng Zhang
    Xiaoyuan Yang
    Xiaocui Li
    [J]. Advances in Difference Equations, 2018
  • [7] A Posteriori Error Estimates for Finite Element Methods for Systems of Nonlinear, Dispersive Equations
    Ohannes A. Karakashian
    Michael M. Wise
    [J]. Communications on Applied Mathematics and Computation, 2022, 4 : 823 - 854
  • [8] INTERPOLATION COEFFICIENTS MIXED FINITE ELEMENT METHODS AND L∞ - ERROR ESTIMATES FOR NONLINEAR OPTIMAL CONTROL PROBLEM
    Lu, Zuliang
    Zhang, Shuhua
    Cao, Longzhou
    Li, Lin
    Yang, Yin
    [J]. JOURNAL OF MATHEMATICAL INEQUALITIES, 2017, 11 (04): : 1113 - 1129
  • [9] Unconditionally optimal error estimates of a linearized weak Galerkin finite element method for semilinear parabolic equations
    Ying Liu
    Zhen Guan
    Yufeng Nie
    [J]. Advances in Computational Mathematics, 2022, 48
  • [10] Unconditionally optimal error estimates of a linearized weak Galerkin finite element method for semilinear parabolic equations
    Liu, Ying
    Guan, Zhen
    Nie, Yufeng
    [J]. ADVANCES IN COMPUTATIONAL MATHEMATICS, 2022, 48 (04)