Unconditionally optimal error estimates of a linearized weak Galerkin finite element method for semilinear parabolic equations

被引:3
|
作者
Liu, Ying [1 ]
Guan, Zhen [1 ]
Nie, Yufeng [1 ]
机构
[1] Northwestern Polytech Univ, Sch Math & Stat, Res Ctr Computat Sci, Xian 710129, Shaanxi, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
Weak Galerkin finite element method; Linearized backward Euler scheme; Semilinear parabolic equations; Elliptic projection; Unconditionally optimal error estimates; POLYNOMIAL PRESERVING RECOVERY; FEMS; SUPERCONVERGENCE; APPROXIMATION; CONVERGENCE; GRADIENT;
D O I
10.1007/s10444-022-09961-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the unconditionally optimal error estimates of the linearized backward Euler scheme with the weak Galerkin finite element method for semilinear parabolic equations. With the error splitting technique and elliptic projection, the optimal error estimates in L-2-norm and the discrete H-1-norm are derived without any restriction on the time stepsize. Numerical results on both polygonal and tetrahedral meshes are provided to illustrate our theoretical conclusions.
引用
收藏
页数:22
相关论文
共 50 条