The maximal operator on weighted variable Lebesgue spaces

被引:2
|
作者
David Cruz-Uribe
Lars Diening
Peter Hästö
机构
[1] Trinity College,Department of Mathematics
[2] (Ludwig-Maximilians-Universität München),Institute of Mathematics, LMU Munich
[3] University of Oulu,Department of Mathematical Sciences
关键词
variable exponent Lebesgue spaces; Muckenhoupt weights; maximal operator; Primary 42B25; Secondary 42B35;
D O I
暂无
中图分类号
学科分类号
摘要
We study the boundedness of the maximal operator on the weighted variable exponent Lebesgue spaces Lωp(·) (Ω). For a given log-Hölder continuous exponent p with 1 < inf p ⩽ supp < ∞ we present a necessary and sufficient condition on the weight ω for the boundedness of M. This condition is a generalization of the classical Muckenhoupt condition.
引用
收藏
页码:361 / 374
页数:13
相关论文
共 50 条