Error Estimate of a Fully Discrete Local Discontinuous Galerkin Method for Variable-Order Time-Fractional Diffusion Equations

被引:0
|
作者
Leilei Wei
Shuying Zhai
Xindong Zhang
机构
[1] Henan University of Technology,College of Science
[2] Huaqiao University,School of Mathematical Sciences
[3] Xinjiang Normal University,College of Mathematics Sciences
关键词
Variable-order derivative; Discontinuous Galerkin method; Stability; Error estimates; 65M06;
D O I
暂无
中图分类号
学科分类号
摘要
The aim of this paper is to develop a fully discrete local discontinuous Galerkin method to solve a class of variable-order fractional diffusion problems. The scheme is discretized by a weighted-shifted Grünwald formula in the temporal discretization and a local discontinuous Galerkin method in the spatial direction. The stability and the L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2$$\end{document}-convergence of the scheme are proved for all variable-order α(t)∈(0,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha (t)\in (0,1)$$\end{document}. The proposed method is of accuracy-order O(τ3+hk+1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(\tau ^3+h^{k+1})$$\end{document} , where τ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau$$\end{document}, h, and k are the temporal step size, the spatial step size, and the degree of piecewise Pk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P^k$$\end{document} polynomials, respectively. Some numerical tests are provided to illustrate the accuracy and the capability of the scheme.
引用
收藏
页码:429 / 443
页数:14
相关论文
共 50 条
  • [31] A fully discrete local discontinuous Galerkin method for one-dimensional time-fractional Fisher's equation
    Zhang, Xindong
    He, Yinnian
    Wei, Leilei
    Tang, Bo
    Wang, Shaoli
    [J]. INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2014, 91 (09) : 2021 - 2038
  • [32] A Support Vector Machine Method for Two Time-Scale Variable-Order Time-Fractional Diffusion Equations
    Yang, Zhiwei
    Liu, Huan
    Guo, Xu
    Wang, Hong
    [J]. EAST ASIAN JOURNAL ON APPLIED MATHEMATICS, 2022, 12 (01) : 145 - 162
  • [33] A Reduced Order Local Discontinuous Galerkin Method for the Variable Coefficients Diffusion Equations
    Zhu, Danchen
    Qian, Lingzhi
    Wang, Jing
    [J]. IAENG International Journal of Applied Mathematics, 2023, 53 (04)
  • [34] Exponential-sum-approximation technique for variable-order time-fractional diffusion equations
    Zhang, Jia-Li
    Fang, Zhi-Wei
    Sun, Hai-Wei
    [J]. JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2022, 68 (01) : 323 - 347
  • [35] A robust scheme for Caputo variable-order time-fractional diffusion-type equations
    Sadri, Khadijeh
    Hosseini, Kamyar
    Baleanu, Dumitru
    Salahshour, Soheil
    Hincal, Evren
    [J]. JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2023, 148 (12) : 5747 - 5764
  • [36] A robust scheme for Caputo variable-order time-fractional diffusion-type equations
    Khadijeh Sadri
    Kamyar Hosseini
    Dumitru Baleanu
    Soheil Salahshour
    Evren Hinçal
    [J]. Journal of Thermal Analysis and Calorimetry, 2023, 148 : 5747 - 5764
  • [37] Exponential-sum-approximation technique for variable-order time-fractional diffusion equations
    Jia-Li Zhang
    Zhi-Wei Fang
    Hai-Wei Sun
    [J]. Journal of Applied Mathematics and Computing, 2022, 68 : 323 - 347
  • [38] A numerical study based on an implicit fully discrete local discontinuous Galerkin method for the time-fractional coupled Schrodinger system
    Wei, Leilei
    Zhang, Xindong
    Kumar, Sunil
    Yildirim, Ahmet
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2012, 64 (08) : 2603 - 2615
  • [39] The local discontinuous Galerkin method for 2D nonlinear time-fractional advection-diffusion equations
    Eshaghi, Jafar
    Kazem, Saeed
    Adibi, Hojjatollah
    [J]. ENGINEERING WITH COMPUTERS, 2019, 35 (04) : 1317 - 1332
  • [40] ERROR ANALYSIS OF A HIGH ORDER METHOD FOR TIME-FRACTIONAL DIFFUSION EQUATIONS
    Lv, Chunwan
    Xu, Chuanju
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2016, 38 (05): : A2699 - A2724