We extend Milnor’s μ-invariants of link homotopy to ordered (classical or virtual) tangles. Simple combinatorial formulas for μ-invariants are given in terms of counting trees in Gauss diagrams. Invariance under Reidemeister moves corresponds to axioms of Loday’s diassociative algebra. The relation of tangles to diassociative algebras is formulated in terms of a morphism of corresponding operads.
机构:
Univ Tokyo, Grad Sch Math Sci, Meguro Ku, 3-8-1 Komaba, Tokyo 1538914, JapanUniv Tokyo, Grad Sch Math Sci, Meguro Ku, 3-8-1 Komaba, Tokyo 1538914, Japan
Kotorii, Yuka
Mizusawa, Atsuhiko
论文数: 0引用数: 0
h-index: 0
机构:
Waseda Univ, Dept Math Fundamental Sci & Engn, Shinjuku Ku, 3-4-1 Okubo, Tokyo 1698555, JapanUniv Tokyo, Grad Sch Math Sci, Meguro Ku, 3-8-1 Komaba, Tokyo 1538914, Japan
机构:
Universite Louis Pasteur, Inst Rech Math Avancee, CNRS, F-67084 Strasbourg, FranceUniversite Louis Pasteur, Inst Rech Math Avancee, CNRS, F-67084 Strasbourg, France
Kassel, C
Turaev, V
论文数: 0引用数: 0
h-index: 0
机构:
Universite Louis Pasteur, Inst Rech Math Avancee, CNRS, F-67084 Strasbourg, FranceUniversite Louis Pasteur, Inst Rech Math Avancee, CNRS, F-67084 Strasbourg, France