Diassociative Algebras and Milnor’s Invariants for Tangles

被引:0
|
作者
Olga Kravchenko
Michael Polyak
机构
[1] Université de Lyon,Department of Mathematics
[2] Université Lyon 1,undefined
[3] ICJ,undefined
[4] UMR 5208 CNRS,undefined
[5] Technion,undefined
来源
关键词
57M25; 57M27; 18D50; 16S37; tangles; -invariants; planar trees; dialgebras; operads;
D O I
暂无
中图分类号
学科分类号
摘要
We extend Milnor’s μ-invariants of link homotopy to ordered (classical or virtual) tangles. Simple combinatorial formulas for μ-invariants are given in terms of counting trees in Gauss diagrams. Invariance under Reidemeister moves corresponds to axioms of Loday’s diassociative algebra. The relation of tangles to diassociative algebras is formulated in terms of a morphism of corresponding operads.
引用
收藏
页码:297 / 316
页数:19
相关论文
共 50 条
  • [41] Milnor algebras could be isomorphic to modular algebras
    Martin, Bernd
    Suess, Hendrik
    JOURNAL OF SYMBOLIC COMPUTATION, 2009, 44 (09) : 1268 - 1279
  • [42] Topological invariants of real Milnor fibres
    Zbigniew Szafraniec
    manuscripta mathematica, 2003, 110 : 159 - 169
  • [43] Topological invariants of real Milnor fibres
    Szafraniec, Z
    MANUSCRIPTA MATHEMATICA, 2003, 110 (02) : 159 - 169
  • [44] Oriented Quantum Algebras and Coalgebras, Invariants of Oriented 1-1 Tangles, Knots and Links
    Kauffman, Louis
    Radford, David E.
    CROSS DISCIPLINARY ADVANCES IN QUANTUM COMPUTING, 2011, 536 : 95 - 132
  • [45] Milnor invariants and twisted Whitney towers
    Conant, J.
    Schneiderman, R.
    Teichner, P.
    JOURNAL OF TOPOLOGY, 2014, 7 (01) : 187 - 224
  • [47] HL-homotopy of handlebody-links and Milnor's invariants
    Kotorii, Yuka
    Mizusawa, Atsuhiko
    TOPOLOGY AND ITS APPLICATIONS, 2017, 221 : 715 - 736
  • [48] BERNSTEIN POLYNOMIALS AND MILNOR ALGEBRAS
    KOCHMAN, F
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1976, 73 (08) : 2546 - 2546
  • [49] Directional Invariants of Doubly Periodic Tangles
    Diamantis, Ioannis
    Lambropoulou, Sofia
    Mahmoudi, Sonia
    SYMMETRY-BASEL, 2024, 16 (08):
  • [50] Chord diagram invariants of tangles and graphs
    Kassel, C
    Turaev, V
    DUKE MATHEMATICAL JOURNAL, 1998, 92 (03) : 497 - 552