Threshold dynamics in an SEIRS model with latency and temporary immunity

被引:0
|
作者
Yuan Yuan
Jacques Bélair
机构
[1] Memorial University of Newfoundland,Department of Mathematics and Statistics
[2] Université de Montréal,Départment de mathématiques et de statistique & Centre de recherches mathématiques
来源
关键词
Disease transmission; Latent period; Temporary immune period; Probability distribution; Stability; 92D25; 92D30;
D O I
暂无
中图分类号
学科分类号
摘要
A disease transmission model of SEIRS type with distributed delays in latent and temporary immune periods is discussed. With general/particular probability distributions in both of these periods, we address the threshold property of the basic reproduction number R0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R_0$$\end{document} and the dynamical properties of the disease-free/endemic equilibrium points present in the model. More specifically, we 1. show the dependence of R0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R_0$$\end{document} on the probability distribution in the latent period and the independence of R0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R_0$$\end{document} from the distribution of the temporary immunity, 2. prove that the disease free equilibrium is always globally asymptotically stable when R0<1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R_0<1$$\end{document}, and 3. according to the choice of probability functions in the latent and temporary immune periods, establish that the disease always persists when R0>1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R_0>1$$\end{document} and an endemic equilibrium exists with different stability properties. In particular, the endemic steady state is at least locally asymptotically stable if the probability distribution in the temporary immunity is a decreasing exponential function when the duration of the latency stage is fixed or exponentially decreasing. It may become oscillatory under certain conditions when there exists a constant delay in the temporary immunity period. Numerical simulations are given to verify the theoretical predictions.
引用
收藏
页码:875 / 904
页数:29
相关论文
共 50 条
  • [41] Dynamics of the threshold model on hypergraphs
    Xu, Xin-Jian
    He, Shuang
    Zhang, Li-Jie
    CHAOS, 2022, 32 (02)
  • [42] Threshold dynamics of a diffusive HIV infection model with infection-age, latency and cell-cell transmission
    Lyu, Guoyang
    Wang, Jinliang
    Zhang, Ran
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2024, 138
  • [43] Global stability of discrete virus dynamics models with humoural immunity and latency
    Elaiw, A. M.
    Alshaikh, M. A.
    JOURNAL OF BIOLOGICAL DYNAMICS, 2019, 13 (01) : 639 - 674
  • [44] Dynamics of a delayed SEIRS-V model on the transmission of worms in a wireless sensor network
    Zhang, Zizhen
    Si, Fengshan
    ADVANCES IN DIFFERENCE EQUATIONS, 2014,
  • [45] Dynamics of simplicial SEIRS epidemic model: global asymptotic stability and neural Lyapunov functions
    Zou, Yukun
    Peng, Xiaoxiao
    Yang, Wei
    Zhang, Jingdong
    Lin, Wei
    JOURNAL OF MATHEMATICAL BIOLOGY, 2024, 89 (01)
  • [46] Dynamics of a delayed SEIRS-V model on the transmission of worms in a wireless sensor network
    Zizhen Zhang
    Fengshan Si
    Advances in Difference Equations, 2014
  • [47] Global Dynamics of a SEIRS Epidemic Model with Saturated Disease Transmission Rate and Vaccination Control
    Jana S.
    Haldar P.
    Nandi S.K.
    Kar T.K.
    International Journal of Applied and Computational Mathematics, 2017, 3 (1) : 43 - 64
  • [48] An SIR epidemic model with partial temporary immunity modeled with delay
    Taylor, Michael L.
    Carr, Thomas W.
    JOURNAL OF MATHEMATICAL BIOLOGY, 2009, 59 (06) : 841 - 880
  • [49] Global Stability of SEIRS Model in Epidemiology
    柏灵
    王克
    Northeastern Mathematical Journal, 2002, (03) : 233 - 244
  • [50] Two Strain Dengue Model with Temporary Cross Immunity and Seasonality
    Aguiar, Maira
    Ballesteros, Sebastien
    Stollenwerk, Nico
    NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, VOLS I-III, 2010, 1281 : 732 - 735