Threshold dynamics in an SEIRS model with latency and temporary immunity

被引:0
|
作者
Yuan Yuan
Jacques Bélair
机构
[1] Memorial University of Newfoundland,Department of Mathematics and Statistics
[2] Université de Montréal,Départment de mathématiques et de statistique & Centre de recherches mathématiques
来源
关键词
Disease transmission; Latent period; Temporary immune period; Probability distribution; Stability; 92D25; 92D30;
D O I
暂无
中图分类号
学科分类号
摘要
A disease transmission model of SEIRS type with distributed delays in latent and temporary immune periods is discussed. With general/particular probability distributions in both of these periods, we address the threshold property of the basic reproduction number R0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R_0$$\end{document} and the dynamical properties of the disease-free/endemic equilibrium points present in the model. More specifically, we 1. show the dependence of R0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R_0$$\end{document} on the probability distribution in the latent period and the independence of R0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R_0$$\end{document} from the distribution of the temporary immunity, 2. prove that the disease free equilibrium is always globally asymptotically stable when R0<1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R_0<1$$\end{document}, and 3. according to the choice of probability functions in the latent and temporary immune periods, establish that the disease always persists when R0>1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R_0>1$$\end{document} and an endemic equilibrium exists with different stability properties. In particular, the endemic steady state is at least locally asymptotically stable if the probability distribution in the temporary immunity is a decreasing exponential function when the duration of the latency stage is fixed or exponentially decreasing. It may become oscillatory under certain conditions when there exists a constant delay in the temporary immunity period. Numerical simulations are given to verify the theoretical predictions.
引用
收藏
页码:875 / 904
页数:29
相关论文
共 50 条
  • [1] Threshold dynamics in an SEIRS model with latency and temporary immunity
    Yuan, Yuan
    Belair, Jacques
    JOURNAL OF MATHEMATICAL BIOLOGY, 2014, 69 (04) : 875 - 904
  • [2] Deterministic Seirs Epidemic Model for Modeling Vital Dynamics, Vaccinations, and Temporary Immunity
    Trawicki, Marek B.
    MATHEMATICS, 2017, 5 (01)
  • [3] Global dynamics of an SEIRS epidemic model with constant immigration and immunity
    Zhang, Li Juan
    Li, Yingqiu
    Ren, Qingqing
    Huo, Zhenxiang
    WSEAS Transactions on Mathematics, 2013, 12 (05) : 630 - 640
  • [4] Threshold dynamics of a non-autonomous SEIRS model with quarantine and isolation
    Mohammad A. Safi
    Mudassar Imran
    Abba B. Gumel
    Theory in Biosciences, 2012, 131 : 19 - 30
  • [5] Threshold dynamics of a non-autonomous SEIRS model with quarantine and isolation
    Safi, Mohammad A.
    Imran, Mudassar
    Gumel, Abba B.
    THEORY IN BIOSCIENCES, 2012, 131 (01) : 19 - 30
  • [6] Threshold dynamics of a time-delayed SEIRS model with pulse vaccination
    Bai, Zhenguo
    MATHEMATICAL BIOSCIENCES, 2015, 269 : 178 - 185
  • [7] The threshold of a stochastic delayed SIR epidemic model with temporary immunity
    Liu, Qun
    Chen, Qingmei
    Jiang, Daqing
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2016, 450 : 115 - 125
  • [8] Threshold Analysis and Stationary Distribution of a Stochastic Model with Relapse and Temporary Immunity
    Liu, Peng
    Meng, Xinzhu
    Qi, Haokun
    SYMMETRY-BASEL, 2020, 12 (03):
  • [9] The threshold of a stochastic delayed SIRS epidemic model with temporary immunity and vaccination
    Xu, Changyong
    Li, Xiaoyue
    CHAOS SOLITONS & FRACTALS, 2018, 111 : 227 - 234
  • [10] The SEIRS model for infectious disease dynamics
    Bjornstad, Ottar N.
    Shea, Katriona
    Krzywinski, Martin
    Altman, Naomi
    NATURE METHODS, 2020, 17 (06) : 557 - 558