Inference in a structural heteroskedastic calibration model

被引:0
|
作者
Mário de Castro
Manuel Galea
机构
[1] Universidade de São Paulo,Instituto de Ciências Matemáticas e de Computação
[2] Pontificia Universidad Católica de Chile,undefined
来源
Statistical Papers | 2015年 / 56卷
关键词
EM algorithm; Calibration; Estimation; Hypotheses testing; Maximum likelihood; Measurement error models; Structural models; 62J05; 62J99;
D O I
暂无
中图分类号
学科分类号
摘要
The main goal of this paper is to study inference in an heteroskedastic calibration model. We embrace a multivariate structural model with known diagonal covariance error matrices, which is a common setup when different measurement methods are compared. Maximum likelihood estimates are computed numerically via the EM algorithm. Consistent estimation of the asymptotic variance of the maximum likelihood estimators and a graphical device for model checking are also discussed. Test statistics are proposed for testing hypotheses of interest with the asymptotic chi-square distribution which guarantees correct asymptotic significance levels. Results of simulations comprising point estimation, interval estimation, and hypothesis testing are reported. An application to a real data set is given. Up to best of our knowledge, topics such as model checking and hypotheses testing have received only scarce attention in the literature on calibration models.
引用
收藏
页码:479 / 494
页数:15
相关论文
共 50 条
  • [21] Inference on the seasonally cointegrated model with structural changes
    Song, Daegun
    Cho, Sinsup
    JOURNAL OF THE KOREAN STATISTICAL SOCIETY, 2007, 36 (04) : 501 - 522
  • [22] CALIBRATION AND STATISTICAL INFERENCE
    ANDREWS, DF
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1970, 65 (331) : 1233 - +
  • [23] INFERENCE ABOUT MULTIPLICATIVE HETEROSKEDASTIC COMPONENTS OF VARIANCE IN A MIXED LINEAR GAUSSIAN MODEL WITH AN APPLICATION TO BEEF-CATTLE BREEDING
    SANCRISTOBAL, M
    FOULLEY, JL
    MANFREDI, E
    GENETICS SELECTION EVOLUTION, 1993, 25 (01) : 3 - 30
  • [24] Model selection for regression with heteroskedastic and autocorrelated errors
    Mao, Guangyu
    ECONOMICS LETTERS, 2013, 118 (03) : 497 - 501
  • [25] Robust and heteroskedastic inference in multibreed variance components, genetic parameters and breeding values
    de Oliveira, Mauricio Morgado
    Cardoso, Fernando Flores
    da Silveira Osorio, Jose Carlos
    REVISTA BRASILEIRA DE ZOOTECNIA-BRAZILIAN JOURNAL OF ANIMAL SCIENCE, 2011, 40 (04): : 772 - 780
  • [26] Semiparametric estimation of a heteroskedastic sample selection model
    Chen, S
    Khan, S
    ECONOMETRIC THEORY, 2003, 19 (06) : 1040 - 1064
  • [27] Generalized quasi-maximum likelihood inference for periodic conditionally heteroskedastic models
    Aknouche A.
    Al-Eid E.
    Demouche N.
    Statistical Inference for Stochastic Processes, 2018, 21 (3) : 485 - 511
  • [28] THE GRAVITY MODEL: AN ILLUSTRATION OF STRUCTURAL ESTIMATION AS CALIBRATION
    Balistreri, Edward J.
    Hillberry, Russell H.
    ECONOMIC INQUIRY, 2008, 46 (04) : 511 - 527
  • [29] Pitfalls and improvements in the joint inference of heteroscedasticity and autocorrelation in hydrological model calibration
    Evin, Guillaume
    Kavetski, Dmitri
    Thyer, Mark
    Kuczera, George
    WATER RESOURCES RESEARCH, 2013, 49 (07) : 4518 - 4524
  • [30] Bayesian Inference Based Parameter Calibration of the LuGre-Friction Model
    Gehb, C. M.
    Atamturktur, S.
    Platz, R.
    Melz, T.
    EXPERIMENTAL TECHNIQUES, 2020, 44 (03) : 369 - 382