Inference in a structural heteroskedastic calibration model

被引:0
|
作者
Mário de Castro
Manuel Galea
机构
[1] Universidade de São Paulo,Instituto de Ciências Matemáticas e de Computação
[2] Pontificia Universidad Católica de Chile,undefined
来源
Statistical Papers | 2015年 / 56卷
关键词
EM algorithm; Calibration; Estimation; Hypotheses testing; Maximum likelihood; Measurement error models; Structural models; 62J05; 62J99;
D O I
暂无
中图分类号
学科分类号
摘要
The main goal of this paper is to study inference in an heteroskedastic calibration model. We embrace a multivariate structural model with known diagonal covariance error matrices, which is a common setup when different measurement methods are compared. Maximum likelihood estimates are computed numerically via the EM algorithm. Consistent estimation of the asymptotic variance of the maximum likelihood estimators and a graphical device for model checking are also discussed. Test statistics are proposed for testing hypotheses of interest with the asymptotic chi-square distribution which guarantees correct asymptotic significance levels. Results of simulations comprising point estimation, interval estimation, and hypothesis testing are reported. An application to a real data set is given. Up to best of our knowledge, topics such as model checking and hypotheses testing have received only scarce attention in the literature on calibration models.
引用
收藏
页码:479 / 494
页数:15
相关论文
共 50 条
  • [1] Inference in a structural heteroskedastic calibration model
    de Castro, Mario
    Galea, Manuel
    STATISTICAL PAPERS, 2015, 56 (02) : 479 - 494
  • [2] Bayesian inference and model comparison for asymmetric smooth transition heteroskedastic models
    Richard Gerlach
    Cathy W. S. Chen
    Statistics and Computing, 2008, 18
  • [3] Bayesian inference and model comparison for asymmetric smooth transition heteroskedastic models
    Gerlach, Richard
    Chen, Cathy W. S.
    STATISTICS AND COMPUTING, 2008, 18 (04) : 391 - 408
  • [4] Robust inference in conditionally heteroskedastic autoregressions
    Pedersen, Rasmus Sondergaard
    ECONOMETRIC REVIEWS, 2020, 39 (03) : 244 - 259
  • [5] INFERENCE FOR HETEROSKEDASTIC PCA WITH MISSING DATA
    Yan, Yuling
    Chen, Yuxin
    Fan, Jianqing
    ANNALS OF STATISTICS, 2024, 52 (02): : 729 - 756
  • [6] Multifidelity Model Calibration in Structural Dynamics Using Stochastic Variational Inference on Manifolds
    Tsilifis, Panagiotis
    Pandita, Piyush
    Ghosh, Sayan
    Wang, Liping
    ENTROPY, 2022, 24 (09)
  • [7] Approximate inference in heteroskedastic regressions: A numerical evaluation
    Cribari-Neto, Francisco
    Lima, Maria da Gloria A.
    JOURNAL OF APPLIED STATISTICS, 2010, 37 (04) : 591 - 615
  • [8] Testing inference in heteroskedastic fixed effects models
    Uchoa, Carlos F. A.
    Cribari-Neto, Francisco
    Menezes, Tatiane A.
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2014, 235 (03) : 660 - 670
  • [9] Detection of structural breaks in a time-varying heteroskedastic regression model
    Chen, Cathy W. S.
    Gerlach, Richard
    Liu, Feng-Chi
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2011, 141 (11) : 3367 - 3381
  • [10] Inference in partially identified heteroskedastic simultaneous equations models
    Luetkepohl, Helmut
    Milunovich, George
    Yang, Minxian
    JOURNAL OF ECONOMETRICS, 2020, 218 (02) : 317 - 345