Ontology-driven integrative analysis of omics data through Onassis

被引:0
|
作者
Eugenia Galeota
Kamal Kishore
Mattia Pelizzola
机构
[1] Center for Genomic Science of IIT@SEMM,
[2] Fondazione Istituto Italiano di Tecnologia,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Public repositories of large-scale omics datasets represent a valuable resource for researchers. In fact, data re-analysis can either answer novel questions or provide critical data able to complement in-house experiments. However, despite the development of standards for the compilation of metadata, the identification and organization of samples still constitutes a major bottleneck hampering data reuse. We introduce Onassis, an R package within the Bioconductor environment providing key functionalities of Natural Language Processing (NLP) tools. Leveraging biomedical ontologies, Onassis greatly simplifies the association of samples from large-scale repositories to their representation in terms of ontology-based annotations. Moreover, through the use of semantic similarity measures, Onassis hierarchically organizes the datasets of interest, thus supporting the semantically aware analysis of the corresponding omics data. In conclusion, Onassis leverages NLP techniques, biomedical ontologies, and the R statistical framework, to identify, relate, and analyze datasets from public repositories. The tool was tested on various large-scale datasets, including compendia of gene expression, histone marks, and DNA methylation, illustrating how it can facilitate the integrative analysis of various omics data.
引用
收藏
相关论文
共 50 条
  • [21] Ontology-driven conceptual modelling
    Guarino, N
    Schneider, L
    [J]. CONCEPTUAL MODELING - ER 2002, 2002, 2503 : 10 - 10
  • [22] Ontology-driven perspective of CFRaaS
    Kebande, Victor R.
    Karie, Nickson M.
    Ikuesan, Richard A.
    Venter, Hein S.
    [J]. WILEY INTERDISCIPLINARY REVIEWS: FORENSIC SCIENCE, 2020, 2 (05):
  • [23] An Ontology-Driven antiSPIT Architecture
    Dritsas, Stelios
    Gritzalis, Dimitris
    [J]. NEXT GENERATION SOCIETY: TECHNOLOGICAL AND LEGAL ISSUES, 2010, 26 : 189 - +
  • [24] Ontology-driven map generalization
    Kulik, L
    Duckham, M
    Egenhofer, M
    [J]. JOURNAL OF VISUAL LANGUAGES AND COMPUTING, 2005, 16 (03): : 245 - 267
  • [25] Ontology-Driven Edge Computing
    Ryabinin, Konstantin
    Chuprina, Svetlana
    [J]. COMPUTATIONAL SCIENCE - ICCS 2020, PT VII, 2020, 12143 : 312 - 325
  • [26] Ontology-driven semantic mapping
    Beneventano, Domenico
    Dahlem, Nikolai
    El Haoum, Sabina
    Hahn, Axel
    Montanari, Daniele
    Reinelt, Matthias
    [J]. ENTERPRISE INTEROPERABILITY III: NEW CHALLENGES AND INDUSTRIAL APPROACHES, 2008, : 329 - +
  • [27] ONTOLOGY-DRIVEN FMEA METHOD
    Molhanec, Martin
    [J]. SOFTWARE DEVELOPMENT 2012, 2012, : 70 - 76
  • [28] DISim: Ontology-driven Simulation of Biomedical Data Integration Tasks
    Sernadela, Pedro
    Pereira, Artur
    Rossetti, Rosaldo
    [J]. 2015 10TH IBERIAN CONFERENCE ON INFORMATION SYSTEMS AND TECHNOLOGIES (CISTI), 2015,
  • [29] Ontology-driven automated generation of data entry interfaces to databases
    Cannon, A
    Kennedy, JB
    Paterson, T
    Watson, MF
    [J]. KEY TECHNOLOGIES FOR DATA MANAGEMENT, 2004, 3112 : 150 - 164
  • [30] Enterprise Ontology-Driven Development
    Matula, Jiri
    Hunka, Frantisek
    [J]. ENTERPRISE AND ORGANIZATIONAL MODELING AND SIMULATION, EOMAS 2018, 2018, 332 : 3 - 15