Three-manifold invariants associated with restricted quantum groups

被引:0
|
作者
Qi Chen
Chih-Chien Yu
Yu Zhang
机构
[1] Winston-Salem State University,Department of Mathematics
[2] University of Arkansas - Fort Smith,Department of Mathematics
[3] Harbin Institute of Technology,Department of Mathematics
来源
Mathematische Zeitschrift | 2012年 / 272卷
关键词
Restricted quantum groups; Witten–Reshetikhin–Turaev ; (2) invariant; Hennings invariant; Integral; Cointegral; Rational homology 3-spheres; 57M27; 81R50;
D O I
暂无
中图分类号
学科分类号
摘要
We show a simple relation between Witten–Reshetikhin–Turaev SU(2) invariant and the Hennings invariant associated with the restricted quantum \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathfrak{sl}_{2}}}$$\end{document} . These invariants are defined in very different methods: the former uses the representation theory of quantum \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathfrak{sl}_{2}}}$$\end{document} while the latter uses the integral of the Hopf algebra. But they turn out to be the same for most rational homology 3-spheres up to a sign. This relation can be used to prove the integrality of the former invariant.
引用
收藏
页码:987 / 999
页数:12
相关论文
共 50 条
  • [1] Three-manifold invariants associated with restricted quantum groups
    Chen, Qi
    Yu, Chih-Chien
    Zhang, Yu
    MATHEMATISCHE ZEITSCHRIFT, 2012, 272 (3-4) : 987 - 999
  • [2] Three-Manifold Quantum Invariants and Mock Theta Functions
    Cheng, Miranda C.N.
    Ferrari, Francesca
    Sgroi, Gabriele
    arXiv, 2019,
  • [3] Efficient quantum processing of three-manifold topological invariants
    Garnerone, S.
    Marzuoli, A.
    Rasetti, M.
    ADVANCES IN THEORETICAL AND MATHEMATICAL PHYSICS, 2009, 13 (06) : 1601 - 1652
  • [4] Three-manifold quantum invariants and mock theta functions
    Cheng, Miranda C. N.
    Ferrari, Francesca
    Sgroi, Gabriele
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2020, 378 (2163):
  • [5] KAHLERIAN THREE-MANIFOLD GROUPS
    Kotschick, D.
    MATHEMATICAL RESEARCH LETTERS, 2013, 20 (03) : 521 - 525
  • [6] Three-Manifold Invariants and Their Relation with the Fundamental Group
    E. Guadagnini
    L. Pilo
    Communications in Mathematical Physics, 1998, 192 : 47 - 65
  • [7] Three-manifold invariants and their relation with the fundamental group
    Guadagnini, E
    Pilo, L
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1998, 192 (01) : 47 - 65
  • [8] Estimating Turaev-Viro three-manifold invariants is universal for quantum computation
    Alagic, Gorjan
    Jordan, Stephen P.
    Koenig, Robert
    Reichardt, Ben W.
    PHYSICAL REVIEW A, 2010, 82 (04):
  • [9] Holomorphic disks and three-manifold invariants:: Properties and applications
    Ozsváth, P
    Szabó, Z
    ANNALS OF MATHEMATICS, 2004, 159 (03) : 1159 - 1245
  • [10] GROUP RINGS OF THREE-MANIFOLD GROUPS
    Kielak, Dawid
    Linton, Marco
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2024, 152 (05) : 1939 - 1946