Three-manifold invariants and their relation with the fundamental group

被引:4
|
作者
Guadagnini, E
Pilo, L
机构
[1] Univ Pisa, Dipartimento Fis, I-56100 Pisa, Italy
[2] Ist Nazl Fis Nucl, Pisa, Italy
[3] Scuola Normale Super Pisa, I-56100 Pisa, Italy
关键词
D O I
10.1007/s002200050290
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider the 3-manifold invariant I(M) which is defined by means of the Chern-Simons quantum field theory and which coincides with the Reshetikhin-Turaev invariant. We present some arguments and numerical results supporting the conjecture that for nonvanishing I(M), the absolute value \I(M)\ only depends on the fundamental group pi(1)(M) of the manifold M. For lens spaces, the conjecture is proved when the gauge group is SU(2). In the case in which the gauge group is SU(3), we present numerical computations confirming the conjecture.
引用
收藏
页码:47 / 65
页数:19
相关论文
共 50 条
  • [1] Three-Manifold Invariants and Their Relation with the Fundamental Group
    E. Guadagnini
    L. Pilo
    Communications in Mathematical Physics, 1998, 192 : 47 - 65
  • [2] Three-Manifold Quantum Invariants and Mock Theta Functions
    Cheng, Miranda C.N.
    Ferrari, Francesca
    Sgroi, Gabriele
    arXiv, 2019,
  • [3] Holomorphic disks and three-manifold invariants:: Properties and applications
    Ozsváth, P
    Szabó, Z
    ANNALS OF MATHEMATICS, 2004, 159 (03) : 1159 - 1245
  • [4] Efficient quantum processing of three-manifold topological invariants
    Garnerone, S.
    Marzuoli, A.
    Rasetti, M.
    ADVANCES IN THEORETICAL AND MATHEMATICAL PHYSICS, 2009, 13 (06) : 1601 - 1652
  • [5] Three-manifold invariants associated with restricted quantum groups
    Chen, Qi
    Yu, Chih-Chien
    Zhang, Yu
    MATHEMATISCHE ZEITSCHRIFT, 2012, 272 (3-4) : 987 - 999
  • [6] Three-manifold invariants associated with restricted quantum groups
    Qi Chen
    Chih-Chien Yu
    Yu Zhang
    Mathematische Zeitschrift, 2012, 272 : 987 - 999
  • [7] Three-manifold quantum invariants and mock theta functions
    Cheng, Miranda C. N.
    Ferrari, Francesca
    Sgroi, Gabriele
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2020, 378 (2163):
  • [8] Skeins, SU(N) three-manifold invariants and TQFT
    Lickorish, WBR
    COMMENTARII MATHEMATICI HELVETICI, 2000, 75 (01) : 45 - 64
  • [9] GROUP RINGS OF THREE-MANIFOLD GROUPS
    Kielak, Dawid
    Linton, Marco
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2024, 152 (05) : 1939 - 1946
  • [10] Chern-Simons theory, knot invariants, vertex models and three-manifold invariants
    Kaul, RK
    FRONTIERS OF FIELD THEORY, QUANTUM GRAVITY AND STRINGS, 1999, 227 : 45 - 63