The Krein–von Neumann Extension for Schrödinger Operators on Metric Graphs

被引:0
|
作者
Jacob Muller
Jonathan Rohleder
机构
[1] Stockholms universitet,Matematiska institutionen
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
The Krein–von Neumann extension is studied for Schrödinger operators on metric graphs. Among other things, its vertex conditions are expressed explicitly, and its relation to other self-adjoint vertex conditions (e.g. continuity-Kirchhoff) is explored. A variational characterisation for its positive eigenvalues is obtained. Based on this, the behaviour of its eigenvalues under perturbations of the metric graph is investigated, and so-called surgery principles are established. Moreover, isoperimetric eigenvalue inequalities are obtained.
引用
收藏
相关论文
共 50 条
  • [1] The Krein-von Neumann Extension for Schrodinger Operators on Metric Graphs
    Muller, Jacob
    Rohleder, Jonathan
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2021, 15 (02)
  • [2] Eigenfunction Expansions for Schrödinger Operators on Metric Graphs
    Daniel Lenz
    Carsten Schubert
    Peter Stollmann
    Integral Equations and Operator Theory, 2008, 62 : 541 - 553
  • [3] The Krein-von Neumann extension revisited
    Fucci, Guglielmo
    Gesztesy, Fritz
    Kirsten, Klaus
    Littlejohn, Lance L.
    Nichols, Roger
    Stanfill, Jonathan
    APPLICABLE ANALYSIS, 2022, 101 (05) : 1593 - 1616
  • [4] Schrödinger operators with δ′-interactions and the Krein-Stieltjes string
    A. S. Kostenko
    M. M. Malamud
    Doklady Mathematics, 2010, 81 : 342 - 347
  • [5] Operators on anti-dual pairs: Generalized Krein-von Neumann extension
    Tarcsay, Zsigmond
    Titkos, Tamas
    MATHEMATISCHE NACHRICHTEN, 2021, 294 (09) : 1821 - 1838
  • [6] An Agmon estimate for Schrödinger operators on graphs
    Stefan Steinerberger
    Letters in Mathematical Physics, 2023, 113
  • [7] On the relation between Schrödinger and von Neumann equations
    V. I. Man'ko
    G. Marmo
    E. C. G. Sudarshan
    F. Zaccaria
    Journal of Russian Laser Research, 1999, 20 : 421 - 437
  • [8] Optimal Hardy inequalities for Schrödinger operators on graphs
    Matthias Keller
    Yehuda Pinchover
    Felix Pogorzelski
    Communications in Mathematical Physics, 2018, 358 : 767 - 790
  • [9] Magnetic-Sparseness and Schrödinger Operators on Graphs
    Michel Bonnefont
    Sylvain Golénia
    Matthias Keller
    Shiping Liu
    Florentin Münch
    Annales Henri Poincaré, 2020, 21 : 1489 - 1516
  • [10] Asymptotic isospectrality of Schrödinger operators on periodic graphs
    Saburova, Natalia
    ANALYSIS AND MATHEMATICAL PHYSICS, 2024, 14 (04)