Localized John–Nirenberg–Campanato spaces

被引:0
|
作者
Jingsong Sun
Guangheng Xie
Dachun Yang
机构
[1] Beijing Normal University,Laboratory of Mathematics and Complex Systems (Ministry of Education of China), School of Mathematical Sciences
[2] Central South University,School of Mathematics and Statistics
来源
关键词
Cube; Euclidean space; Localized John–Nirenberg–Campanato space; Hardy-kind space; Local atom; Duality; Primary 42B35; Secondary 42B30, 42B25, 46E35;
D O I
暂无
中图分类号
学科分类号
摘要
Let p∈(1,∞)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p\in (1,\infty )$$\end{document}, q∈[1,∞)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q\in [1,\infty )$$\end{document}, s∈Z+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s\in {\mathbb Z}_{+}$$\end{document}, α∈[0,∞)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha \in [0,\infty )$$\end{document}, and X\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {X}$$\end{document} be Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb R^n$$\end{document} or a cube Q0⫋Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Q_0\subsetneqq \mathbb R^n$$\end{document}. In this article, the authors first introduce the local John–Nirenberg–Campanato space jn(p,q,s)α(X)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$jn_{(p,q,s)_{\alpha }}(\mathcal {X})$$\end{document} and show that the localized Campanato space is the limit case of jn(p,q,s)α(X)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$jn_{(p,q,s)_{\alpha }}(\mathcal {X})$$\end{document} as p→∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p\rightarrow \infty $$\end{document}. By means of local atoms and the weak-∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$*$$\end{document} topology, the authors then introduce the local Hardy-kind space hk(p′,q′,s)α(X)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$hk_{(p',q',s)_{\alpha }}(\mathcal {X})$$\end{document} which proves to be the predual space of jn(p,q,s)α(X)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$jn_{(p,q,s)_{\alpha }}(\mathcal {X})$$\end{document}. Moreover, the authors prove the invariance of hk(p′,q′,s)α(X)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$hk_{(p',q',s)_{\alpha }}(\mathcal {X})$$\end{document} with respect to q∈(1,p)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q\in (1,p)$$\end{document}, where p′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p'$$\end{document} or q′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q'$$\end{document} denotes the conjugate number of p or q, respectively. All these results are new even for the localized John–Nirenberg space.
引用
收藏
相关论文
共 50 条
  • [21] Sparse Brudnyi and John-Nirenberg Spaces
    Dominguez, Oscar
    Milman, Mario
    [J]. COMPTES RENDUS MATHEMATIQUE, 2021, 359 (08) : 1059 - 1069
  • [22] Inequalities of John—Nirenberg type in doubling spaces
    Stephen M. Buckley
    [J]. Journal d’Analyse Mathématique, 1999, 79 : 215 - 240
  • [23] Boundedness of Calderon-Zygmund operators on special John-Nirenberg-Campanato and Hardy-type spaces via congruent cubes
    Jia, Hongchao
    Tao, Jin
    Yang, Dachun
    Yuan, Wen
    Zhang, Yangyang
    [J]. ANALYSIS AND MATHEMATICAL PHYSICS, 2022, 12 (01)
  • [24] Inequalities of John-Nirenberg type in doubling spaces
    Buckley, SM
    [J]. JOURNAL D ANALYSE MATHEMATIQUE, 1999, 79 (1): : 215 - 240
  • [25] POINTWISE MULTIPLIERS FOR LOCALIZED MORREY-CAMPANATO SPACES ON RD-SPACES
    Lin, Haibo
    Yang, Dachun
    [J]. ACTA MATHEMATICA SCIENTIA, 2014, 34 (06) : 1677 - 1694
  • [26] John–Nirenberg Inequalities and Weight Invariant BMO Spaces
    Jarod Hart
    Rodolfo H. Torres
    [J]. The Journal of Geometric Analysis, 2019, 29 : 1608 - 1648
  • [27] BMO and the John-Nirenberg Inequality on Measure Spaces
    Dafni, Galia
    Gibara, Ryan
    Lavigne, Andrew
    [J]. ANALYSIS AND GEOMETRY IN METRIC SPACES, 2020, 8 (01): : 335 - 362
  • [28] A Survey on Function Spaces of John-Nirenberg Type
    Tao, Jin
    Yang, Dachun
    Yuan, Wen
    [J]. MATHEMATICS, 2021, 9 (18)
  • [29] Parabolic John-Nirenberg spaces with time lag
    Myyrylainen, Kim
    Yang, Dachun
    [J]. MATHEMATISCHE ZEITSCHRIFT, 2024, 306 (03)
  • [30] JOHN-NIRENBERG INEQUALITY FOR LIPSCHITZ MARTINGALE SPACES
    Ren, Yanbo
    Ma, Congbian
    [J]. MATHEMATICAL INEQUALITIES & APPLICATIONS, 2024, 27 (01): : 45 - 52