Localized John–Nirenberg–Campanato spaces

被引:0
|
作者
Jingsong Sun
Guangheng Xie
Dachun Yang
机构
[1] Beijing Normal University,Laboratory of Mathematics and Complex Systems (Ministry of Education of China), School of Mathematical Sciences
[2] Central South University,School of Mathematics and Statistics
来源
关键词
Cube; Euclidean space; Localized John–Nirenberg–Campanato space; Hardy-kind space; Local atom; Duality; Primary 42B35; Secondary 42B30, 42B25, 46E35;
D O I
暂无
中图分类号
学科分类号
摘要
Let p∈(1,∞)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p\in (1,\infty )$$\end{document}, q∈[1,∞)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q\in [1,\infty )$$\end{document}, s∈Z+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s\in {\mathbb Z}_{+}$$\end{document}, α∈[0,∞)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha \in [0,\infty )$$\end{document}, and X\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {X}$$\end{document} be Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb R^n$$\end{document} or a cube Q0⫋Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Q_0\subsetneqq \mathbb R^n$$\end{document}. In this article, the authors first introduce the local John–Nirenberg–Campanato space jn(p,q,s)α(X)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$jn_{(p,q,s)_{\alpha }}(\mathcal {X})$$\end{document} and show that the localized Campanato space is the limit case of jn(p,q,s)α(X)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$jn_{(p,q,s)_{\alpha }}(\mathcal {X})$$\end{document} as p→∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p\rightarrow \infty $$\end{document}. By means of local atoms and the weak-∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$*$$\end{document} topology, the authors then introduce the local Hardy-kind space hk(p′,q′,s)α(X)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$hk_{(p',q',s)_{\alpha }}(\mathcal {X})$$\end{document} which proves to be the predual space of jn(p,q,s)α(X)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$jn_{(p,q,s)_{\alpha }}(\mathcal {X})$$\end{document}. Moreover, the authors prove the invariance of hk(p′,q′,s)α(X)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$hk_{(p',q',s)_{\alpha }}(\mathcal {X})$$\end{document} with respect to q∈(1,p)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q\in (1,p)$$\end{document}, where p′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p'$$\end{document} or q′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q'$$\end{document} denotes the conjugate number of p or q, respectively. All these results are new even for the localized John–Nirenberg space.
引用
收藏
相关论文
共 50 条
  • [1] Localized John-Nirenberg-Campanato spaces
    Sun, Jingsong
    Xie, Guangheng
    Yang, Dachun
    [J]. ANALYSIS AND MATHEMATICAL PHYSICS, 2021, 11 (01)
  • [2] Nontriviality of John–Nirenberg–Campanato Spaces
    Zongze Zeng
    Der-Chen Chang
    Jin Tao
    Dachun Yang
    [J]. Complex Analysis and Operator Theory, 2023, 17
  • [3] John-Nirenberg-Campanato Spaces
    Tao, Jin
    Yang, Dachun
    Yuan, Wen
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2019, 189
  • [4] Nontriviality of John-Nirenberg-Campanato Spaces
    Zeng, Zongze
    Chang, Der-Chen
    Tao, Jin
    Yang, Dachun
    [J]. COMPLEX ANALYSIS AND OPERATOR THEORY, 2023, 17 (05)
  • [5] Special John-Nirenberg-Campanato spaces via congruent cubes
    Hongchao Jia
    Jin Tao
    Dachun Yang
    Wen Yuan
    Yangyang Zhang
    [J]. Science China Mathematics, 2022, 65 : 359 - 420
  • [6] Special John-Nirenberg-Campanato spaces via congruent cubes
    Hongchao Jia
    Jin Tao
    Dachun Yang
    Wen Yuan
    Yangyang Zhang
    [J]. Science China Mathematics, 2022, 65 (02) : 359 - 420
  • [7] Special John-Nirenberg-Campanato spaces via congruent cubes
    Jia, Hongchao
    Tao, Jin
    Yang, Dachun
    Yuan, Wen
    Zhang, Yangyang
    [J]. SCIENCE CHINA-MATHEMATICS, 2022, 65 (02) : 359 - 420
  • [9] John-Nirenberg Type Inequalities for the Morrey-Campanato Spaces
    Wenming Li
    [J]. Journal of Inequalities and Applications, 2008
  • [10] John–Nirenberg Type Inequalities for Musielak–Orlicz Campanato Spaces on Spaces of Homogeneous Type
    Duong Quoc Huy
    Luong Dang Ky
    [J]. Vietnam Journal of Mathematics, 2019, 47 : 461 - 476