On the X-rank with respect to linearly normal curves

被引:0
|
作者
Edoardo Ballico
Alessandra Bernardi
机构
[1] University of Trento,Department of Mathematics
[2] GALAAD,undefined
[3] INRIA Méditerranée,undefined
来源
Collectanea Mathematica | 2013年 / 64卷
关键词
Secant varieties; Tangential varieties; Rank; Linearly normal curves; 14H45; 14N05; 14Q05; 14H50;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we study the X-rank of points with respect to smooth linearly normal curves \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${X \subset \mathbb {P}^{n}}$$\end{document} of genus g and degree n+g. We prove that, for such a curve X, under certain circumstances, the X-rank of a general point of X-border rank equal to s is less or equal than n + 1 − s. In the particular case of g = 2 we give a complete description of the X-rank if n = 3, 4; while if n ≥ 5 we study the X-rank of points belonging to the tangential variety of X.
引用
收藏
页码:141 / 154
页数:13
相关论文
共 50 条
  • [31] Moments of the Rank of Elliptic Curves
    Miller, Steven J.
    Wong, Siman
    [J]. CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2012, 64 (01): : 151 - 182
  • [32] REMARK ON THE RANK OF ELLIPTIC CURVES
    Nikolaev, Igor
    [J]. OSAKA JOURNAL OF MATHEMATICS, 2009, 46 (02) : 515 - 527
  • [33] ON THE p-RANK OF CURVES
    Terzi, Sadik
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2024, 152 (10) : 4155 - 4169
  • [34] Rank of divisors on tropical curves
    Hladky, Jan
    Kral, Daniel
    Norine, Serguei
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES A, 2013, 120 (07) : 1521 - 1538
  • [35] Center Genome with Respect to the Rank Distance
    Biller, Priscila
    Pereira Zanetti, Joao Paulo
    Meidanis, Joao
    [J]. ADVANCES IN BIOINFORMATICS AND COMPUTATIONAL BIOLOGY, BSB 2020, 2020, 12558 : 141 - 149
  • [36] CONDITIONS ON NORMAL SPACES OF FINITE RANK THAT GUARANTEE C(X) IS SV
    Larson, Suzanne
    [J]. COMMUNICATIONS IN ALGEBRA, 2016, 44 (11) : 4678 - 4696
  • [37] MORDELL-WEIL RANK OF THE JACOBIANS OF THE CURVES DEFINED BY Y(P)=F(X)
    MURABAYASHI, N
    [J]. ACTA ARITHMETICA, 1993, 64 (04) : 297 - 302
  • [38] Normal forms for the endpoint map near nice singular curves for rank-two distributions
    Agrachev, Andrei A.
    Boarotto, Francesco
    [J]. ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2021, 27
  • [39] NORMAL LINEARLY LINDELOF PROBLEM
    HOWES, NR
    SCONYERS, WB
    [J]. NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1971, 18 (01): : 211 - +
  • [40] Reparameterization of Curves and Surfaces with Respect to Their Convolution
    Lavicka, Miroslav
    Bastl, Bohumir
    Sir, Zbynek
    [J]. MATHEMATICAL METHODS FOR CURVES AND SURFACES, 2010, 5862 : 285 - 298