On the X-rank with respect to linearly normal curves

被引:0
|
作者
Edoardo Ballico
Alessandra Bernardi
机构
[1] University of Trento,Department of Mathematics
[2] GALAAD,undefined
[3] INRIA Méditerranée,undefined
来源
Collectanea Mathematica | 2013年 / 64卷
关键词
Secant varieties; Tangential varieties; Rank; Linearly normal curves; 14H45; 14N05; 14Q05; 14H50;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we study the X-rank of points with respect to smooth linearly normal curves \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${X \subset \mathbb {P}^{n}}$$\end{document} of genus g and degree n+g. We prove that, for such a curve X, under certain circumstances, the X-rank of a general point of X-border rank equal to s is less or equal than n + 1 − s. In the particular case of g = 2 we give a complete description of the X-rank if n = 3, 4; while if n ≥ 5 we study the X-rank of points belonging to the tangential variety of X.
引用
收藏
页码:141 / 154
页数:13
相关论文
共 50 条
  • [1] On the X-rank with respect to linearly normal curves
    Ballico, Edoardo
    Bernardi, Alessandra
    [J]. COLLECTANEA MATHEMATICA, 2013, 64 (02) : 141 - 154
  • [2] On the X-rank with respect to linear projections of projective varieties
    Ballico, Edoardo
    Bernardi, Alessandra
    [J]. MATHEMATISCHE NACHRICHTEN, 2011, 284 (17-18) : 2133 - 2140
  • [3] ON THE X-RANK OF LINEAR SUBSPACES
    Ballico, E.
    [J]. REVUE ROUMAINE DE MATHEMATIQUES PURES ET APPLIQUEES, 2013, 58 (04): : 437 - 451
  • [4] ON THE X-RANK OF A CURVE X ⊂ Pn: AN EXTREMAL CASE
    Ballico, E.
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2013, 141 (04) : 1211 - 1213
  • [5] Identifiability of an X-Rank Decomposition of Polynomial Maps
    Comon, Pierre
    Qi, Yang
    Usevich, Konstantin
    [J]. SIAM JOURNAL ON APPLIED ALGEBRA AND GEOMETRY, 2017, 1 (01): : 388 - 414
  • [6] SUBSETS OF THE VARIETY X ⊂ Pn EVINCING THE X-RANK OF A POINT OF Pn
    Ballico, E.
    [J]. HOUSTON JOURNAL OF MATHEMATICS, 2016, 42 (03): : 803 - 824
  • [7] X-Rank: Explainable Ranking in Complex Multi-Layered Networks
    Kang, Jian
    Freitas, Scott
    Yu, Haichao
    Xia, Yinglong
    Cao, Nan
    Tong, Hanghang
    [J]. CIKM'18: PROCEEDINGS OF THE 27TH ACM INTERNATIONAL CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, 2018, : 1959 - 1962
  • [8] ON LINEARLY NORMAL SPACE-CURVES
    DOLCETTI, A
    PARESCHI, G
    [J]. MATHEMATISCHE ZEITSCHRIFT, 1988, 198 (01) : 73 - 82
  • [9] HYPERPLANE SECTIONS OF LINEARLY NORMAL CURVES
    BALLICO, E
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1994, 122 (02) : 395 - 398
  • [10] X-Rank: A Robust Algorithm for Small Molecule Identification Using Tandem Mass Spectrometry
    Mylonas, Roman
    Mauron, Yann
    Masselot, Alexandre
    Binz, Pierre-Alain
    Budin, Nicolas
    Fathi, Marc
    Viette, Veronique
    Hochstrasser, Denis F.
    Lisacek, Frederique
    [J]. ANALYTICAL CHEMISTRY, 2009, 81 (18) : 7604 - 7610