The dissipative Bose-Hubbard modelMethods and examples

被引:0
|
作者
G. Kordas
D. Witthaut
P. Buonsante
A. Vezzani
R. Burioni
A. I. Karanikas
S. Wimberger
机构
[1] University of Athens,Physics Department, Nuclear & Particle Physics Section
[2] Forschungszentrum Jülich,Institute for Energy and Climate Research (IEK
[3] University of Cologne,STE)
[4] QSTAR,Institute for Theoretical Physics
[5] INO-CNR and LENS,Dipartimento di Fisica e Scienze della Terra
[6] S3,Sezione di Milano Bicocca, Gruppo Collegato di Parma
[7] CNR Istituto di Nanoscienze,undefined
[8] Università di Parma,undefined
[9] INFN,undefined
关键词
European Physical Journal Special Topic; Master Equation; Phase Noise; Wigner Function; Dark Soliton;
D O I
暂无
中图分类号
学科分类号
摘要
Open many-body quantum systems have attracted renewed interest in the context of quantum information science and quantum transport with biological clusters and ultracold atomic gases. The physical relevance in many-particle bosonic systems lies in the realization of counter-intuitive transport phenomena and the stochastic preparation of highly stable and entangled many-body states due to engineered dissipation. We review a variety of approaches to describe an open system of interacting ultracold bosons which can be modeled by a tight-binding Hubbard approximation. Going along with the presentation of theoretical and numerical techniques, we present a series of results in diverse setups, based on a master equation description of the dissipative dynamics of ultracold bosons in a one-dimensional lattice. Next to by now standard numerical methods such as the exact unravelling of the master equation by quantum jumps for small systems and beyond mean-field expansions for larger ones, we present a coherent-state path integral formalism based on Feynman-Vernon theory applied to a many-body context.
引用
收藏
页码:2127 / 2171
页数:44
相关论文
共 50 条
  • [41] Bose-Hubbard model on a star lattice
    Isakov, Sergei V.
    Sengupta, K.
    Kim, Yong Baek
    PHYSICAL REVIEW B, 2009, 80 (21):
  • [42] Variational approach for the Bose-Hubbard model
    Yu De-Shui
    Chen Jing-Biao
    CHINESE PHYSICS LETTERS, 2008, 25 (05) : 1792 - 1794
  • [43] Dynamical thermalization in Bose-Hubbard systems
    Schlagheck, Peter
    Shepelyansky, Dima L.
    PHYSICAL REVIEW E, 2016, 93 (01)
  • [44] Floquet Prethermalization in a Bose-Hubbard System
    Rubio-Abadal, Antonio
    Ippoliti, Matteo
    Hollerith, Simon
    Wei, David
    Rui, Jun
    Sondhi, S. L.
    Khemani, Vedika
    Gross, Christian
    Bloch, Immanuel
    PHYSICAL REVIEW X, 2020, 10 (02)
  • [45] Disordered spinor Bose-Hubbard model
    Lacki, Mateusz
    Paganelli, Simone
    Ahufinger, Veronica
    Sanpera, Anna
    Zakrzewski, Jakub
    PHYSICAL REVIEW A, 2011, 83 (01):
  • [46] Doublon Relaxation in the Bose-Hubbard Model
    Chudnovskiy, A. L.
    Gangardt, D. M.
    Kamenev, A.
    PHYSICAL REVIEW LETTERS, 2012, 108 (08)
  • [47] Asymptotic localization in the Bose-Hubbard model
    Bols, Alex
    De Roeck, Wojciech
    JOURNAL OF MATHEMATICAL PHYSICS, 2018, 59 (02)
  • [48] Towards a holographic Bose-Hubbard model
    Mitsutoshi Fujita
    Sarah M. Harrison
    Andreas Karch
    René Meyer
    Natalie M. Paquette
    Journal of High Energy Physics, 2015
  • [49] Towards a holographic Bose-Hubbard model
    Fujita, Mitsutoshi
    Harrison, Sarah M.
    Karch, Andreas
    Meyer, Rene
    Paquettte, Natalie M.
    JOURNAL OF HIGH ENERGY PHYSICS, 2015, (04):
  • [50] Thermalization of Bipartite Bose-Hubbard Models
    Khripkov, Christine
    Cohen, Doron
    Vardi, Amichay
    JOURNAL OF PHYSICAL CHEMISTRY A, 2016, 120 (19): : 3136 - 3141