The dissipative Bose-Hubbard modelMethods and examples

被引:0
|
作者
G. Kordas
D. Witthaut
P. Buonsante
A. Vezzani
R. Burioni
A. I. Karanikas
S. Wimberger
机构
[1] University of Athens,Physics Department, Nuclear & Particle Physics Section
[2] Forschungszentrum Jülich,Institute for Energy and Climate Research (IEK
[3] University of Cologne,STE)
[4] QSTAR,Institute for Theoretical Physics
[5] INO-CNR and LENS,Dipartimento di Fisica e Scienze della Terra
[6] S3,Sezione di Milano Bicocca, Gruppo Collegato di Parma
[7] CNR Istituto di Nanoscienze,undefined
[8] Università di Parma,undefined
[9] INFN,undefined
关键词
European Physical Journal Special Topic; Master Equation; Phase Noise; Wigner Function; Dark Soliton;
D O I
暂无
中图分类号
学科分类号
摘要
Open many-body quantum systems have attracted renewed interest in the context of quantum information science and quantum transport with biological clusters and ultracold atomic gases. The physical relevance in many-particle bosonic systems lies in the realization of counter-intuitive transport phenomena and the stochastic preparation of highly stable and entangled many-body states due to engineered dissipation. We review a variety of approaches to describe an open system of interacting ultracold bosons which can be modeled by a tight-binding Hubbard approximation. Going along with the presentation of theoretical and numerical techniques, we present a series of results in diverse setups, based on a master equation description of the dissipative dynamics of ultracold bosons in a one-dimensional lattice. Next to by now standard numerical methods such as the exact unravelling of the master equation by quantum jumps for small systems and beyond mean-field expansions for larger ones, we present a coherent-state path integral formalism based on Feynman-Vernon theory applied to a many-body context.
引用
收藏
页码:2127 / 2171
页数:44
相关论文
共 50 条
  • [1] The dissipative Bose-Hubbard model
    Kordas, G.
    Witthaut, D.
    Buonsante, P.
    Vezzani, A.
    Burioni, R.
    Karanikas, A. I.
    Wimberger, S.
    EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2015, 224 (11): : 2127 - 2171
  • [2] Dynamics of entanglement in a dissipative Bose-Hubbard dimer
    Pudlik, Tadeusz
    Hennig, Holger
    Witthaut, D.
    Campbell, David K.
    PHYSICAL REVIEW A, 2013, 88 (06):
  • [3] Stationary discrete solitons in a driven dissipative Bose-Hubbard chain
    Naether, Uta
    Quijandria, Fernando
    Jose Garcia-Ripoll, Juan
    Zueco, David
    PHYSICAL REVIEW A, 2015, 91 (03):
  • [4] Spin Squeezing in a Tunneling-Dissipative Bose-Hubbard Dimer
    Jie, Gao
    Guo-Qiang, Huang
    Cui-Lan, Luo
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2020, 59 (11) : 3372 - 3377
  • [5] Non-equilibrium dynamics in dissipative Bose-Hubbard chains
    Kordas, Georgios
    Witthaut, Dirk
    Wimberger, Sandro
    ANNALEN DER PHYSIK, 2015, 527 (9-10) : 619 - 628
  • [7] Spin Squeezing in a Tunneling-Dissipative Bose-Hubbard Dimer
    Gao Jie
    Huang Guo-Qiang
    Luo Cui-Lan
    International Journal of Theoretical Physics, 2020, 59 : 3372 - 3377
  • [8] Critical slowing down in driven-dissipative Bose-Hubbard lattices
    Vicentini, Filippo
    Minganti, Fabrizio
    Rota, Riccardo
    Orso, Giuliano
    Ciuti, Cristiano
    PHYSICAL REVIEW A, 2018, 97 (01)
  • [9] The driven-dissipative Bose-Hubbard dimer: Phase diagram and chaos
    Giraldo A.
    Krauskopf B.
    Broderick N.G.R.
    Levenson J.A.
    Yacomotti A.M.
    New Journal of Physics, 2020, 22 (04):
  • [10] Dynamics of spatial phase coherence in a dissipative Bose-Hubbard atomic system
    Vatre, Remy
    Bouganne, Raphael
    Aguilera, Manel Bosch
    Ghermaoui, Alexis
    Beugnon, Jerome
    Lopes, Raphael
    Gerbier, Fabrice
    COMPTES RENDUS PHYSIQUE, 2023, 24