Iterative algorithm for solving a class of general Sylvester-conjugate matrix equation \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\sum_{i = 1}^{s} A_{i}V + \sum_{j = 1}^{t} B_{j}W = \sum_{l = 1}^{m} E_{l}\overline{V}F_{l} + C$\end{document}

被引:0
|
作者
Mohamed A. Ramadan
Mokhtar A. Abdel Naby
Ahmed M. E. Bayoumi
机构
[1] Menoufia University,Department of Mathematics, Faculty of Science
[2] Ain Shams University,Department of Mathematics, Faculty of Education
关键词
General Sylvester-conjugate matrix equations; Iterative algorithm; Inner product; Frobenius norm; 65F10; 65F30;
D O I
10.1007/s12190-013-0683-z
中图分类号
学科分类号
摘要
This paper is concerned with iterative solution to general Sylvester-conjugate matrix equation of the form \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\sum_{i = 1}^{s} A_{i}V + \sum_{j = 1}^{t} B_{j}W = \sum_{l = 1}^{m} E_{l}\overline{V}F_{l} + C$\end{document}. An iterative algorithm is established to solve this matrix equation. When this matrix equation is consistent, for any initial matrices, the solutions can be obtained within finite iterative steps in the absence of round off errors. Some lemmas and theorems are stated and proved where the iterative solutions are obtained. Finally, a numerical example is given to verify the effectiveness of the proposed algorithm.
引用
收藏
页码:99 / 118
页数:19
相关论文
共 50 条