A path integral realization of joint JT¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ J\overline{T} $$\end{document}, TJ¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ T\overline{J} $$\end{document} and TT¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ T\overline{T} $$\end{document} flows

被引:0
|
作者
Jeremías Aguilera-Damia
Victor I. Giraldo-Rivera
Edward A. Mazenc
Ignacio Salazar Landea
Ronak M Soni
机构
[1] Centro Atómico Bariloche and CONICET,Instituto de Física La Plata
[2] Universidad Nacional de La Plata,CONICET & Departamento de Física
[3] Stanford University,Department of Physics
关键词
2D Gravity; Field Theories in Lower Dimensions; Nonperturbative Effects;
D O I
10.1007/JHEP07(2020)085
中图分类号
学科分类号
摘要
We recast the joint JT¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ J\overline{T} $$\end{document}, TJ¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ T\overline{J} $$\end{document} and TT¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ T\overline{T} $$\end{document} deformations as coupling the original theory to a mixture of topological gravity and gauge theory. This geometrizes the general flow triggered by irrelevant deformations built out of conserved currents and the stress-energy tensor, by means of a path integral kernel. The partition function of the deformed theory satisfies a diffusion-like flow equation similar to that found in the pure TT¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ T\overline{T} $$\end{document} case. Our proposal passes two stringent tests. Firstly, we recover the classical deformed actions from the kernel, reproducing the known expressions for the free boson and fermion. Secondly, we explicitly compute the torus path integral along the flow and show it localizes to a finite-dimensional, one-loop exact integral over base space torus moduli. The dressed energy levels so obtained match exactly onto those previously reported in the literature.
引用
收藏
相关论文
共 50 条