Carotenoid dark state to chlorophyll energy transfer in isolated light-harvesting complexes CP24 and CP29

被引:0
|
作者
Daniel A. Gacek
Christoph-Peter Holleboom
Pen-Nan Liao
Marco Negretti
Roberta Croce
Peter Jomo Walla
机构
[1] Technische Universität Braunschweig,Department for Biophysical Chemistry, Institute for Physical and Theoretical Chemistry
[2] Vrije Universiteit Amsterdam,Department of Physics and Astronomy and LaserLab Amsterdam, Faculty of Science
来源
Photosynthesis Research | 2020年 / 143卷
关键词
CP24; CP29; Electronic coupling; Carotenoids; Chlorophylls; Photosynthetic regulation;
D O I
暂无
中图分类号
学科分类号
摘要
We present a comparison of the energy transfer between carotenoid dark states and chlorophylls for the minor complexes CP24 and CP29. To elucidate the potential involvement of certain carotenoid–chlorophyll coupling sites in fluorescence quenching of distinct complexes, varying carotenoid compositions and mutants lacking chlorophylls at specific binding sites were examined. Energy transfers between carotenoid dark states and chlorophylls were compared using the coupling parameter, ΦCouplingCar S1-Chl\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varPhi_{\text{Coupling}}^{{{\text{Car S}}_{ 1} {-}{\text{Chl}}}}$$\end{document}, which is calculated from the chlorophyll fluorescence observed after preferential carotenoid two-photon excitation. In CP24, artificial reconstitution with zeaxanthin leads to a significant reduction in the chlorophyll fluorescence quantum yield, ΦF1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varPhi_{\text{F1}}$$\end{document}, and a considerable increase in ΦCouplingCar S1-Chl\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varPhi_{\text{Coupling}}^{{{\text{Car S}}_{ 1} {-}{\text{Chl}}}}$$\end{document}. Similar effects of zeaxanthin were also observed in certain samples of CP29. In CP29, also the replacement of violaxanthin by the sole presence of lutein results in a significant quenching and increased ΦCouplingCar S1-Chl\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varPhi_{\text{Coupling}}^{{{\text{Car S}}_{ 1} {-}{\text{Chl}}}}$$\end{document}. In contrast, the replacement of violaxanthin by lutein in CP24 is not significantly increasing ΦCouplingCar S1-Chl\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varPhi_{\text{Coupling}}^{{{\text{Car S}}_{ 1} {-}{\text{Chl}}}}$$\end{document}. In general, these findings provide evidence that modification of the electronic coupling between carotenoid dark states and chlorophylls by changing carotenoids at distinct sites can significantly influence the quenching of these minor proteins, particularly when zeaxanthin or lutein is used. The absence of Chl612 in CP24 and of Chl612 or Chl603 in CP29 has a considerably smaller effect on ΦF1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varPhi_{{{\text{F}}1}}$$\end{document} and ΦCouplingCar S1-Chl\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varPhi_{\text{Coupling}}^{{{\text{Car S}}_{ 1} {-}{\text{Chl}}}}$$\end{document} than the influence of some carotenoids reported above. However, in CP29 our results indicate slightly dequenching and decreased ΦCouplingCar S1-Chl\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varPhi_{\text{Coupling}}^{{{\text{Car S}}_{ 1} {-}{\text{Chl}}}}$$\end{document} when these chlorophylls are absent. This might indicate that both, Chl612 and Chl603 are involved in carotenoid-dependent quenching in isolated CP29.
引用
收藏
页码:19 / 30
页数:11
相关论文
共 50 条
  • [41] Probing the Effect of Mutations on Light Harvesting in CP29 by Transient Absorption and First-Principles Simulations
    Saraceno, Piermarco
    Sardar, Samim
    Caferri, Roberto
    Camargo, Franco V. A.
    Dall'Osto, Luca
    D'Andrea, Cosimo
    Bassi, Roberto
    Cupellini, Lorenzo
    Cerullo, Giulio
    Mennucci, Benedetta
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2024, 15 (24): : 6398 - 6408
  • [42] ENERGY-TRANSFER IN A LIGHT-HARVESTING CAROTENOID-CHLOROPHYLL C-CHLOROPHYLL A-PROTEIN OF PHAEODACTYLUM-TRICORNUTUM
    GUGLIEMELLI, LA
    DUTTON, HJ
    JURSINIC, PA
    SIEGELMAN, HW
    PHOTOCHEMISTRY AND PHOTOBIOLOGY, 1981, 33 (06) : 903 - 907
  • [43] The thylakoid protein BCM1 sequesters antennae protein CP24 and CP29 within the grana cores thereby reducing their exposure to degradation under heat stress
    Li, Qiuxin
    An, Wenjing
    Ma, Jinfang
    Zhang, Hongmei
    Luo, Manfei
    Qi, Yafei
    Meurer, Joerg
    Ji, Daili
    Chi, Wei
    PLANT JOURNAL, 2025, 121 (05):
  • [44] Femtosecond transient absorption study of carotenoid to chlorophyll energy transfer in the light-harvesting complex II of photosystem II
    Connelly, JP
    Muller, MG
    Bassi, R
    Croce, R
    Holzwarth, AR
    BIOCHEMISTRY, 1997, 36 (02) : 281 - 287
  • [45] Energy Transfer in the Light-Harvesting Complexes of Purple Bacteria
    He, Bei-Bei
    Ming, Meng-Meng
    Liu, Chang-Yong
    Wang, Guo-Dong
    Qin, Li
    Li, You-Wei
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2018, 70 (02) : 225 - 229
  • [46] ENERGY-TRANSFER IN PHOTOSYNTHETIC LIGHT-HARVESTING COMPLEXES
    BRADFORTH, SE
    JIMENEZ, R
    NAGARAJAN, S
    FLEMING, GR
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1994, 208 : 76 - PHYS
  • [47] Controlling energy transfer within light-harvesting complexes
    Fowler, GJS
    Hunter, CN
    BIOPHYSICAL JOURNAL, 1997, 72 (02) : TH417 - TH417
  • [48] Energy Transfer in the Light-Harvesting Complexes of Purple Bacteria
    何贝贝
    明蒙蒙
    刘昌勇
    王国栋
    覃莉
    李有为
    Communications in Theoretical Physics, 2018, 70 (08) : 225 - 229
  • [49] Incoherent energy transfer within light-harvesting complexes
    Julian Juhi-Lian Ting
    The European Physical Journal B - Condensed Matter and Complex Systems, 1999, 12 : 163 - 166
  • [50] Molecular mechanisms of light harvesting in the minor antenna CP29 in near-native membrane lipidic environment
    Sardar, Samim
    Caferri, Roberto
    Camargo, Franco V. A.
    Pamos Serrano, Javier
    Ghezzi, Alberto
    Capaldi, Stefano
    Dall'Osto, Luca
    Bassi, Roberto
    D'Andrea, Cosimo
    Cerullo, Giulio
    JOURNAL OF CHEMICAL PHYSICS, 2022, 156 (20):