Hochschild cohomology of twisted tensor products

被引:0
|
作者
Benjamin Briggs
Sarah Witherspoon
机构
[1] University of Utah,Department of Mathematics
[2] Texas A&M University,Department of Mathematics
来源
Mathematische Zeitschrift | 2022年 / 301卷
关键词
Hochschild cohomology; Gerstenhaber algebra; Twisted tensor products; Quantum complete intersections; 16E40;
D O I
暂无
中图分类号
学科分类号
摘要
The tensor product R⊗S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R\otimes S$$\end{document} of two algebras can have its multiplication deformed by a bicharacter to yield a twisted tensor product R⊗tS\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R\otimes ^t S$$\end{document}. We completely describe the Hochschild cohomology of R⊗tS\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R\otimes ^t S$$\end{document} in terms of the Hochschild cohomology of the components R and S, including the full Gerstenhaber algebra structure. This description generalizes a result of Bergh and Oppermann. A number of interesting classes of noncommutative algebras arise as bicharacter twisted tensor products, sometimes in non-obvious ways. The main result thereby allows us to significantly simplify various calculations in the literature, and to compute Hochschild cohomology in several new classes of examples. In particular, we fully compute the Hochschild cohomology of quantum complete intersection algebras, with any number of indeterminates. One new tool which goes into the main theorem is orbit Hochschild cohomology, which can be defined for algebras with a group action, and which satisfies twisted versions of the usual Gerstenhaber algebra axioms.
引用
收藏
页码:1237 / 1257
页数:20
相关论文
共 50 条
  • [21] Cyclic cohomology of twisted crossed products
    Dahl, E
    [J]. MATHEMATICA SCANDINAVICA, 1996, 78 (02) : 255 - 265
  • [22] On a cohomology of digraphs and Hochschild cohomology
    Grigor'yan, Alexander
    Muranov, Yuri
    Yau, Shing-Tung
    [J]. JOURNAL OF HOMOTOPY AND RELATED STRUCTURES, 2016, 11 (02) : 209 - 230
  • [23] On a cohomology of digraphs and Hochschild cohomology
    Alexander Grigor’yan
    Yuri Muranov
    Shing-Tung Yau
    [J]. Journal of Homotopy and Related Structures, 2016, 11 : 209 - 230
  • [24] On the discriminant of twisted tensor products
    Gaddis, Jason
    Kirkman, Ellen
    Moore, W. Frank
    [J]. JOURNAL OF ALGEBRA, 2017, 477 : 29 - 55
  • [25] RESOLUTIONS FOR TWISTED TENSOR PRODUCTS
    Shepler, Anne
    Witherspoon, Sarah
    [J]. PACIFIC JOURNAL OF MATHEMATICS, 2019, 298 (02) : 445 - 469
  • [26] Twisted bimodules and Hochschild cohomology for self-injective algebras of class An, II
    Erdmann, K
    Holm, T
    Snashall, N
    [J]. ALGEBRAS AND REPRESENTATION THEORY, 2002, 5 (05) : 457 - 482
  • [27] Twisted Bimodules and Hochschild Cohomology for Self-injective Algebras of Class An, II
    Karin Erdmann
    Thorsten Holm
    Nicole Snashall
    [J]. Algebras and Representation Theory, 2002, 5 : 457 - 482
  • [28] Going from cohomology to Hochschild cohomology
    Sköldberg, E
    [J]. JOURNAL OF ALGEBRA, 2005, 288 (02) : 263 - 278
  • [29] Hochschild Cohomology with Support
    Lowen, Wendy
    [J]. INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2015, 2015 (13) : 4741 - 4812
  • [30] On Hochschild cohomology of orders
    S. Koenig
    K. Sanada
    N. Snashall
    [J]. Archiv der Mathematik, 2003, 81 : 627 - 635