Hochschild cohomology of twisted tensor products

被引:0
|
作者
Benjamin Briggs
Sarah Witherspoon
机构
[1] University of Utah,Department of Mathematics
[2] Texas A&M University,Department of Mathematics
来源
Mathematische Zeitschrift | 2022年 / 301卷
关键词
Hochschild cohomology; Gerstenhaber algebra; Twisted tensor products; Quantum complete intersections; 16E40;
D O I
暂无
中图分类号
学科分类号
摘要
The tensor product R⊗S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R\otimes S$$\end{document} of two algebras can have its multiplication deformed by a bicharacter to yield a twisted tensor product R⊗tS\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R\otimes ^t S$$\end{document}. We completely describe the Hochschild cohomology of R⊗tS\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R\otimes ^t S$$\end{document} in terms of the Hochschild cohomology of the components R and S, including the full Gerstenhaber algebra structure. This description generalizes a result of Bergh and Oppermann. A number of interesting classes of noncommutative algebras arise as bicharacter twisted tensor products, sometimes in non-obvious ways. The main result thereby allows us to significantly simplify various calculations in the literature, and to compute Hochschild cohomology in several new classes of examples. In particular, we fully compute the Hochschild cohomology of quantum complete intersection algebras, with any number of indeterminates. One new tool which goes into the main theorem is orbit Hochschild cohomology, which can be defined for algebras with a group action, and which satisfies twisted versions of the usual Gerstenhaber algebra axioms.
引用
收藏
页码:1237 / 1257
页数:20
相关论文
共 50 条
  • [1] Hochschild cohomology of twisted tensor products
    Briggs, Benjamin
    Witherspoon, Sarah
    [J]. MATHEMATISCHE ZEITSCHRIFT, 2022, 301 (02) : 1237 - 1257
  • [2] Gerstenhaber brackets on Hochschild cohomology of twisted tensor products
    Grimley, Lauren
    Nguyen, Van C.
    Witherspoon, Sarah
    [J]. JOURNAL OF NONCOMMUTATIVE GEOMETRY, 2017, 11 (04) : 1351 - 1379
  • [3] Homotopy liftings and Hochschild cohomology of some twisted tensor products
    Ocal, Pablo S.
    Oke, Tolulope
    Witherspoon, Sarah
    [J]. JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2022, 21 (12)
  • [4] Gerstenhaber brackets on Hochschild cohomology of general twisted tensor products
    Karadag, Tekin
    McPhate, Dustin
    Ocal, Pablo S.
    Oke, Tolulope
    Witherspoon, Sarah
    [J]. JOURNAL OF PURE AND APPLIED ALGEBRA, 2021, 225 (06)
  • [5] Hochschild cohomology for tensor products of factors
    Pop, Florin
    Smith, Roger R.
    [J]. OPERATOR ALGEBRAS AND THEIR APPLICATIONS: A TRIBUTE TO RICHARD V KADISON, 2016, 671 : 185 - 197
  • [6] Hochschild homology of twisted tensor products
    Guccione, JA
    Guccione, JJ
    [J]. K-THEORY, 1999, 18 (04): : 363 - 400
  • [7] Cohomology of twisted tensor products
    Bergh, Petter Andreas
    Oppermann, Steffen
    [J]. JOURNAL OF ALGEBRA, 2008, 320 (08) : 3327 - 3338
  • [8] On the Hochschild cohomology ring of tensor products of algebras
    Le, Jue
    Zhou, Guodong
    [J]. JOURNAL OF PURE AND APPLIED ALGEBRA, 2014, 218 (08) : 1463 - 1477
  • [9] HOCHSCHILD COHOMOLOGY OF TENSOR PRODUCTS OF TOPOLOGICAL ALGEBRAS
    Lykova, Zinaida A.
    [J]. PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2010, 53 : 447 - 470
  • [10] Gerstenhaber brackets on Hochschild cohomology of general twisted tensor products (vol 225, 106597, 2021)
    Karadag, T.
    Mcphate, D.
    Ocal, P. S.
    Oke, T.
    Witherspoon, S.
    [J]. JOURNAL OF PURE AND APPLIED ALGEBRA, 2025, 229 (01)