Generalizations of vector quasivariational inclusion problems with set-valued maps

被引:0
|
作者
Pham Huu Sach
Le Anh Tuan
机构
[1] Hanoi Institute of Mathematics,
[2] Ninh Thuan College of Pedagogy,undefined
来源
关键词
Quasivariational inclusion problem; Set-valued map; Existence theorem; Pseudomonotonicity; Generalized concavity;
D O I
暂无
中图分类号
学科分类号
摘要
Existence theorems are given for the problem of finding a point (z0,x0) of a set E × K such that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(z_0,x_0)\in B(z_0,x_0)\times A(z_0,x_0)$$\end{document} and, for all \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\eta\in A(z_0,x_0), (F(z_0,x_0,x_0,\eta), C(z_0,x_0,x_0,\eta))\in \alpha$$\end{document} where α is a relation on 2Y (i.e., a subset of 2Y × 2Y), \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A : E\times K\longrightarrow 2^K,$$\end{document}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B : E\times K\longrightarrow 2^E, C : E\times K\times K\times K\longrightarrow 2^Y$$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F : E\times K\times K\times K\longrightarrow 2^Y$$\end{document} are some set-valued maps, and Y is a topological vector space. Detailed discussions are devoted to special cases of α and C which correspond to several generalized vector quasi-equilibrium problems with set-valued maps. In such special cases, existence theorems are obtained with or without pseudomonotonicity assumptions.
引用
收藏
页码:23 / 45
页数:22
相关论文
共 50 条
  • [11] On Vector Quasi-Equilibrium Problems with Set-Valued Maps
    S. H. Hou
    H. Yu
    G. Y. Chen
    [J]. Journal of Optimization Theory and Applications, 2003, 119 : 485 - 498
  • [12] Nearly Subconvexlike Set-Valued Maps and Vector Optimization Problems
    P. H. Sach
    [J]. Journal of Optimization Theory and Applications, 2003, 119 : 335 - 356
  • [13] Optimal Control Problems for Set-Valued Quasivariational Inequalities with Applications
    Chang, Shih-Sen
    Salahuddin
    Wang, Lin
    Tang, Jinfang
    Zhao, Liangcai
    [J]. MATHEMATICS, 2022, 10 (05)
  • [14] Derivatives of Set-Valued Maps and Gap Functions for Vector Equilibrium Problems
    Hadi Mirzaee
    Majid Soleimani-damaneh
    [J]. Set-Valued and Variational Analysis, 2014, 22 : 673 - 689
  • [15] ∈-Weak Minimal Solutions of Vector Optimization Problems with Set-Valued Maps
    W. D. Rong
    Y. N. Wu
    [J]. Journal of Optimization Theory and Applications, 2000, 106 : 569 - 579
  • [16] Derivatives of Set-Valued Maps and Gap Functions for Vector Equilibrium Problems
    Mirzaee, Hadi
    Soleimani-damaneh, Majid
    [J]. SET-VALUED AND VARIATIONAL ANALYSIS, 2014, 22 (04) : 673 - 689
  • [17] ε-weak minimal solutions of vector optimization problems with set-valued maps
    Rong, WD
    Wu, YN
    [J]. JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2000, 106 (03) : 569 - 579
  • [18] ε-strictly efficient solutions of vector optimization problems with set-valued maps
    Li, Taiyong
    Xu, Yihong
    Zhu, Chuanxi
    [J]. ASIA-PACIFIC JOURNAL OF OPERATIONAL RESEARCH, 2007, 24 (06) : 841 - 854
  • [19] Conic Set-Valued Maps in Vector Optimization
    Pedro Jiménez Guerra
    Miguel Angel Melguizo
    María J. Muñoz-Bouzo
    [J]. Set-Valued Analysis, 2007, 15 : 47 - 59
  • [20] Conic set-valued maps in vector optimization
    Jimenez Guerra, Pedro
    Angel Melguizo, Miguel
    Munoz-Bouzo, Maria J.
    [J]. SET-VALUED ANALYSIS, 2007, 15 (01): : 47 - 59