Generalizations of vector quasivariational inclusion problems with set-valued maps

被引:0
|
作者
Pham Huu Sach
Le Anh Tuan
机构
[1] Hanoi Institute of Mathematics,
[2] Ninh Thuan College of Pedagogy,undefined
来源
关键词
Quasivariational inclusion problem; Set-valued map; Existence theorem; Pseudomonotonicity; Generalized concavity;
D O I
暂无
中图分类号
学科分类号
摘要
Existence theorems are given for the problem of finding a point (z0,x0) of a set E × K such that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(z_0,x_0)\in B(z_0,x_0)\times A(z_0,x_0)$$\end{document} and, for all \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\eta\in A(z_0,x_0), (F(z_0,x_0,x_0,\eta), C(z_0,x_0,x_0,\eta))\in \alpha$$\end{document} where α is a relation on 2Y (i.e., a subset of 2Y × 2Y), \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A : E\times K\longrightarrow 2^K,$$\end{document}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B : E\times K\longrightarrow 2^E, C : E\times K\times K\times K\longrightarrow 2^Y$$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F : E\times K\times K\times K\longrightarrow 2^Y$$\end{document} are some set-valued maps, and Y is a topological vector space. Detailed discussions are devoted to special cases of α and C which correspond to several generalized vector quasi-equilibrium problems with set-valued maps. In such special cases, existence theorems are obtained with or without pseudomonotonicity assumptions.
引用
收藏
页码:23 / 45
页数:22
相关论文
共 50 条