On the coefficients of the independence polynomial of graphs

被引:0
|
作者
Shuchao Li
Lin Liu
Yueyu Wu
机构
[1] Central China Normal University,Faculty of Mathematics and Statistics
来源
关键词
Independent set; Diameter; Girth; Chromatic number; Clique number; Connectivity; 05C35; 05C69; 05C15; 05C40;
D O I
暂无
中图分类号
学科分类号
摘要
An independent set of a graph G is a set of pairwise non-adjacent vertices. Let ik=ik(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$i_k = i_k(G)$$\end{document} be the number of independent sets of cardinality k of G. The independence polynomial I(G,x)=∑k⩾0ik(G)xk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$I(G, x)=\sum _{k\geqslant 0}i_k(G)x^k$$\end{document} defined first by Gutman and Harary has been the focus of considerable research recently, whereas i(G)=I(G,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$i(G)=I(G, 1)$$\end{document} is called the Merrifield–Simmons index of G. In this paper, we first proved that among all trees of order n,  the kth coefficient ik\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$i_k$$\end{document} is smallest when the tree is a path, and is largest for star. Moreover, the graph among all trees of order n with diameter at least d whose all coefficients of I(G, x) are largest is identified. Then we identify the graphs among the n-vertex unicyclic graphs (resp. n-vertex connected graphs with clique number ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega $$\end{document}) which simultaneously minimize all coefficients of I(G, x), whereas the opposite problems of simultaneously maximizing all coefficients of I(G, x) among these two classes of graphs are also solved respectively. At last we characterize the graph among all the n-vertex connected graph with chromatic number χ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi $$\end{document} (resp. vertex connectivity κ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\kappa $$\end{document}) which simultaneously minimize all coefficients of I(G, x). Our results may deduce some known results on Merrifield–Simmons index of graphs.
引用
下载
收藏
页码:1324 / 1342
页数:18
相关论文
共 50 条
  • [21] Independence in connected graphs
    Harant, Jochen
    Rautenbach, Dieter
    DISCRETE APPLIED MATHEMATICS, 2011, 159 (01) : 79 - 86
  • [22] Gated independence in graphs
    Civan, Yusuf
    Deniz, Zakir
    Yetim, Mehmet Akif
    DISCRETE APPLIED MATHEMATICS, 2024, 353 : 121 - 138
  • [23] Common Independence in Graphs
    Dettlaff, Magda
    Lemanska, Magdalena
    Topp, Jerzy
    SYMMETRY-BASEL, 2021, 13 (08):
  • [24] Independence roots and independence fractals of certain graphs
    Alikhani S.
    Peng Y.-H.
    Journal of Applied Mathematics and Computing, 2011, 36 (1-2) : 89 - 100
  • [25] INDEPENDENCE ROOTS AND INDEPENDENCE FRACTALS OF BOOK GRAPHS
    Jahari, Somayeh
    Alikhani, Saeid
    Hasni, Roslan
    ADVANCES AND APPLICATIONS IN MATHEMATICAL SCIENCES, 2016, 16 (01): : 19 - 33
  • [26] On the Independence Polynomial of an Antiregular Graph
    Levit, Vadim E.
    Mandrescu, Eugen
    CARPATHIAN JOURNAL OF MATHEMATICS, 2012, 28 (02) : 279 - 288
  • [27] On the Modes of the Independence Polynomial of the Centipede
    Benoumhani, Moussa
    JOURNAL OF INTEGER SEQUENCES, 2012, 15 (05)
  • [28] COEFFICIENTS OF CYCLOTOMIC POLYNOMIAL
    BEITER, M
    AMERICAN MATHEMATICAL MONTHLY, 1966, 73 (05): : 541 - &
  • [29] On the coefficients and zeros of a polynomial
    Shen, DW
    JOURNAL OF APPROXIMATION THEORY, 1999, 96 (02) : 405 - 410
  • [30] On the Evaluation of Polynomial Coefficients
    Daniela Calvetti
    Lothar Reichel
    Numerical Algorithms, 2003, 33 : 153 - 161