On the coefficients of the independence polynomial of graphs

被引:0
|
作者
Shuchao Li
Lin Liu
Yueyu Wu
机构
[1] Central China Normal University,Faculty of Mathematics and Statistics
来源
关键词
Independent set; Diameter; Girth; Chromatic number; Clique number; Connectivity; 05C35; 05C69; 05C15; 05C40;
D O I
暂无
中图分类号
学科分类号
摘要
An independent set of a graph G is a set of pairwise non-adjacent vertices. Let ik=ik(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$i_k = i_k(G)$$\end{document} be the number of independent sets of cardinality k of G. The independence polynomial I(G,x)=∑k⩾0ik(G)xk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$I(G, x)=\sum _{k\geqslant 0}i_k(G)x^k$$\end{document} defined first by Gutman and Harary has been the focus of considerable research recently, whereas i(G)=I(G,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$i(G)=I(G, 1)$$\end{document} is called the Merrifield–Simmons index of G. In this paper, we first proved that among all trees of order n,  the kth coefficient ik\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$i_k$$\end{document} is smallest when the tree is a path, and is largest for star. Moreover, the graph among all trees of order n with diameter at least d whose all coefficients of I(G, x) are largest is identified. Then we identify the graphs among the n-vertex unicyclic graphs (resp. n-vertex connected graphs with clique number ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega $$\end{document}) which simultaneously minimize all coefficients of I(G, x), whereas the opposite problems of simultaneously maximizing all coefficients of I(G, x) among these two classes of graphs are also solved respectively. At last we characterize the graph among all the n-vertex connected graph with chromatic number χ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi $$\end{document} (resp. vertex connectivity κ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\kappa $$\end{document}) which simultaneously minimize all coefficients of I(G, x). Our results may deduce some known results on Merrifield–Simmons index of graphs.
引用
收藏
页码:1324 / 1342
页数:18
相关论文
共 50 条
  • [1] On the coefficients of the independence polynomial of graphs
    Li, Shuchao
    Liu, Lin
    Wu, Yueyu
    [J]. JOURNAL OF COMBINATORIAL OPTIMIZATION, 2017, 33 (04) : 1324 - 1342
  • [2] Distance Independence Polynomial of Graphs
    Arriesgado, Amelia L.
    Salim, Jeffrey Imer C.
    [J]. INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE, 2024, 19 (04): : 1231 - 1236
  • [3] On the independence polynomial of the corona of graphs
    Levit, Vadim E.
    Mandrescu, Eugen
    [J]. DISCRETE APPLIED MATHEMATICS, 2016, 203 : 85 - 93
  • [4] The independence polynomial of rooted products of graphs
    Rosenfeld, Vladimir R.
    [J]. DISCRETE APPLIED MATHEMATICS, 2010, 158 (05) : 551 - 558
  • [5] Orbit Polynomial of Graphs versus Polynomial with Integer Coefficients
    Ghorbani, Modjtaba
    Jalali-Rad, Maryam
    Dehmer, Matthias
    [J]. SYMMETRY-BASEL, 2021, 13 (04):
  • [6] SOME RESULTS ON THE INDEPENDENCE POLYNOMIAL OF UNICYCLIC GRAPHS
    Oboudi, Mohammad Reza
    [J]. DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2018, 38 (02) : 515 - 524
  • [7] Upper Bounds for the Independence Polynomial of Graphs at -1
    Fayun Cao
    Han Ren
    [J]. Bulletin of the Malaysian Mathematical Sciences Society, 2021, 44 : 3259 - 3267
  • [8] ON THE UNIMODALITY OF INDEPENDENCE POLYNOMIAL OF CERTAIN CLASSES OF GRAPHS
    Alikhani, S.
    Jafari, F.
    [J]. TRANSACTIONS ON COMBINATORICS, 2013, 2 (03) : 33 - 41
  • [9] Several Extreme Coefficients of the Tutte Polynomial of Graphs
    Helin Gong
    Xian’an Jin
    Mengchen Li
    [J]. Graphs and Combinatorics, 2020, 36 : 445 - 457
  • [10] Several Extreme Coefficients of the Tutte Polynomial of Graphs
    Gong, Helin
    Jin, Xian'an
    Li, Mengchen
    [J]. GRAPHS AND COMBINATORICS, 2020, 36 (03) : 445 - 457