Research on adaptive non-uniform rational B-spline real-time interpolation technology based on acceleration constraints

被引:1
|
作者
Guoxun Wang
Qinlin Shu
Jun Wang
Li Li
机构
[1] Shenyang Ligong University,School of Mechanical Engineering
[2] Northeastern University,School of Mechanical Engineering and Automation
关键词
NURBS real-time interpolation; Feed speed fluctuation; Adaptive correction; Feed speed planning; Pre-processing feed speed curve;
D O I
暂无
中图分类号
学科分类号
摘要
In order to solve the problems of low machining precision and efficiency in machining complicated parametric curves in traditional computer numeric control systems, non-uniform rational B-spline (NURBS) real-time interpolation was studied. Considering the problem of feed speed fluctuation in a traditional NURBS interpolation method, the adaptive correction interpolation algorithm that is proposed corrects the calculational accuracy of the next interpolation point parameter value, and the correction time is mutated adaptively according to the length of the interpolation precision and interpolation cycle. This approach is based on the premise that the interpolation cycle will improve the correction accuracy as much as possible, thereby minimizing the interpolation feed speed fluctuation. To mitigate the problem of a large number of calculations and high calculational complexity in feed speed planning of NURBS real-time interpolation, we use a velocity planning algorithm based on a feed speed pretreatment curve; thus, the interpolation feed velocity planning tasks are completed on a non-real-time cycle, the maximum acceleration and jerk requirements of the machine tool are fully considered, and each interpolation point is planned during the speed planning period, which avoids the use of a complex planning algorithm and obtains a smoother velocity curve. Finally, the correctness and effectiveness of the proposed approach were verified by simulation.
引用
收藏
页码:2089 / 2100
页数:11
相关论文
共 50 条
  • [41] DEVELOPMENT OF NON-UNIFORM RATIONAL TYPE-2 FUZZY B-SPLINE CURVE MODELING
    Wahab, Abd Fatah
    Zulkifly, Mohammad Izat Emir
    Yong, Lim Kah
    ADVANCES IN DIFFERENTIAL EQUATIONS AND CONTROL PROCESSES, 2020, 23 (02): : 261 - 277
  • [43] Multi-objective robust airfoil optimization based on non-uniform rational B-spline (NURBS) representation
    LIANG Yu CHENG XiaoQuan LI ZhengNeng XIANG JinWu School of Aeronautic Science and Engineering Beihang University Beijing China
    Science China(Technological Sciences), 2010, 53 (10) : 2708 - 2717
  • [44] Multi-objective robust airfoil optimization based on non-uniform rational B-spline (NURBS) representation
    Liang Yu
    Cheng XiaoQuan
    Li ZhengNeng
    Xiang JinWu
    SCIENCE CHINA-TECHNOLOGICAL SCIENCES, 2010, 53 (10) : 2708 - 2717
  • [45] FC-NURBS curves: fullness control non-uniform rational B-spline curves
    Deng, Chongyang
    Wang, Zhihao
    Liu, Jianzhen
    Xu, Huixia
    Hu, Qianqian
    COMMUNICATIONS IN INFORMATION AND SYSTEMS, 2022, 22 (01) : 131 - 146
  • [46] A novel hole patching algorithm for discrete geometry using non-uniform rational B-spline
    Kumar, Amitesh
    Ito, Yasushi
    Yu, Tzu-Yi
    Ross, Douglas H.
    Shih, Alan M.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2011, 87 (13) : 1254 - 1277
  • [47] Adaptive sampling for real-time rendering of large terrain based on B-spline wavelet
    Kalem, Sid Ali
    Kourgli, Assia
    JOURNAL OF ELECTRONIC IMAGING, 2017, 26 (03)
  • [48] Railroad inspection based on ACFM employing a non-uniform B-spline approach
    Chacon Munoz, J. M.
    Garcia Marquez, F. P.
    Papaelias, M.
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2013, 40 (02) : 605 - 617
  • [49] Fragment-based evaluation of non-uniform B-spline surfaces on GPUs
    University of Tokyo
    Comput.-Aided Des. Appl., 2007, 1-6 (287-294):
  • [50] Derivative-orthogonal non-uniform B-Spline wavelets
    Theodosiou, T. C.
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2021, 188 : 368 - 388