Rock burst prediction based on genetic algorithms and extreme learning machine

被引:0
|
作者
Tian-zheng Li
Yong-xin Li
Xiao-li Yang
机构
[1] Central South University,School of Civil Engineering
来源
关键词
extreme learning machine; feed forward neural network; rock burst prediction; rock excavation;
D O I
暂无
中图分类号
学科分类号
摘要
Rock burst is a kind of geological disaster in rock excavation of high stress areas. To evaluate intensity of rock burst, the maximum shear stress, uniaxial compressive strength, uniaxial tensile strength and rock elastic energy index were selected as input factors, and burst pit depth as output factor. The rock burst prediction model was proposed according to the genetic algorithms and extreme learning machine. The effect of structural surface was taken into consideration. Based on the engineering examples of tunnels, the observed and collected data were divided into the training set, validation set and prediction set. The training set and validation set were used to train and optimize the model. Parameter optimization results are presented. The hidden layer node was 450, and the fitness of the predictions was 0.0197 under the optimal combination of the input weight and offset vector. Then, the optimized model is tested with the prediction set. Results show that the proposed model is effective. The maximum relative error is 4.71%, and the average relative error is 3.20%, which proves that the model has practical value in the relative engineering.
引用
收藏
页码:2105 / 2113
页数:8
相关论文
共 50 条
  • [31] Genetic algorithms in machine learning
    Giordana, A
    Neri, F
    AI COMMUNICATIONS, 1996, 9 (01) : 21 - 26
  • [32] Prediction method of rock burst proneness based on rough set and genetic algorithm
    YU Huai-chang~1
    2.Faculty of Engineering
    International Journal of Coal Science & Technology, 2009, (04) : 367 - 373
  • [33] Prediction of stellar atmospheric parameters using instance-based machine learning and genetic algorithms
    Ramírez, JF
    Fuentes, O
    Gulati, RK
    EXPERIMENTAL ASTRONOMY, 2001, 12 (03) : 163 - 178
  • [34] Prediction of Stellar Atmospheric Parameters using Instance-Based Machine Learning and Genetic Algorithms
    J. Federico Ramírez
    Olac Fuentes
    Ravi K. Gulati
    Experimental Astronomy, 2001, 12 : 163 - 178
  • [35] Accelerated Organic Crystal Structure Prediction with Genetic Algorithms and Machine Learning
    Kadan, Amit
    Ryczko, Kevin
    Wildman, Andrew
    Wang, Rodrigo
    Roitberg, Adrian
    Yamazaki, Takeshi
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2023, 19 (24) : 9388 - 9402
  • [36] An Approach for Crop Prediction in Agriculture: Integrating Genetic Algorithms and Machine Learning
    Mahmud, Tanjim
    Datta, Nippon
    Chakma, Rishita
    Das, Utpol Kanti
    Aziz, Mohammad Tarek
    Islam, Musaddikul
    Salimullah, Abul Hasnat Muhammed
    Hossain, Mohammad Shahadat
    Andersson, Karl
    IEEE ACCESS, 2024, 12 : 173583 - 173598
  • [37] An Approach for Crop Prediction in Agriculture: Integrating Genetic Algorithms and Machine Learning
    Mahmud, Tanjim
    Datta, Nippon
    Chakma, Rishita
    Das, Utpol Kanti
    Aziz, Mohammad Tarek
    Islam, Musaddikul
    Salimullah, Abul Hasnat Muhammed
    Hossain, Mohammad Shahadat
    Andersson, Karl
    IEEE ACCESS, 2024, 12 : 173583 - 173598
  • [38] An Approach for Crop Prediction in Agriculture: Integrating Genetic Algorithms and Machine Learning
    Mahmud, Tanjim
    Datta, Nippon
    Chakma, Rishita
    Kanti Das, Utpol
    Aziz, Mohammad Tarek
    Islam, Musaddikul
    Salimullah, Abul Hasnat Muhammed
    Hossain, Mohammad Shahadat
    Andersson, Karl
    IEEE Access, 2024, 12 : 173583 - 173598
  • [39] Prediction Based on Online Extreme Learning Machine in WWTP Application
    Cao, Weiwei
    Yang, Qinmin
    NEURAL INFORMATION PROCESSING (ICONIP 2018), PT V, 2018, 11305 : 184 - 195
  • [40] Software defect prediction based on weighted extreme learning machine
    Gai, Jinjing
    Zheng, Shang
    Yu, Hualong
    Yang, Hongji
    MULTIAGENT AND GRID SYSTEMS, 2020, 16 (01) : 67 - 82