Two monotonicity results for nabla and delta fractional differences

被引:0
|
作者
Baoguo Jia
Lynn Erbe
Allan Peterson
机构
[1] Zhongshan University,School of Mathematics and Computer Science
[2] University of Nebraska-Lincoln,Department of Mathematics
来源
Archiv der Mathematik | 2015年 / 104卷
关键词
Nabla fractional difference; Delta fractional difference; Monotonicity; 39A12; 39A70;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we study the nabla and delta fractional differences and obtain the following two main results:
引用
收藏
页码:589 / 597
页数:8
相关论文
共 50 条
  • [21] Existence results of fractional delta–nabla difference equations via mixed boundary conditions
    Jiraporn Reunsumrit
    Thanin Sitthiwirattham
    Advances in Difference Equations, 2020
  • [22] On the Nonlocal Fractional Delta-Nabla Sum Boundary Value Problem for Sequential Fractional Delta-Nabla Sum-Difference Equations
    Reunsumrit, Jiraporn
    Sitthiwirattham, Thanin
    MATHEMATICS, 2020, 8 (04)
  • [23] Two asymptotic results of solutions for nabla fractional (q, h)-difference equations
    Du, Feifei
    Erbe, Lynn
    Jia, Baoguo
    Peterson, Allan
    TURKISH JOURNAL OF MATHEMATICS, 2018, 42 (05) : 2214 - 2242
  • [24] Existence results of fractional delta-nabla difference equations via mixed boundary conditions
    Reunsumrit, Jiraporn
    Sitthiwirattham, Thanin
    ADVANCES IN DIFFERENCE EQUATIONS, 2020, 2020 (01)
  • [25] Bayesian Estimation in Delta and Nabla Discrete Fractional Weibull Distributions
    Ganji, M.
    Gharari, F.
    JOURNAL OF PROBABILITY AND STATISTICS, 2016, 2016
  • [26] Monotonicity Analysis of Fractional Proportional Differences
    Suwan, Iyad
    Owies, Shahd
    Abussa, Muayad
    Abdeljawad, Thabet
    DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2020, 2020
  • [27] Monotonicity analysis of a nabla discrete fractional operator with discrete Mittag-Leffler kernel
    Abdeljawad, Thabet
    Baleanu, Dumitru
    CHAOS SOLITONS & FRACTALS, 2017, 102 : 106 - 110
  • [28] Monotonicity results for sequential fractional differences of mixed orders with negative lover bound
    Dahal, Rajendra
    Goodrich, Christopher S.
    Lyons, Benjamin
    JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2021, 27 (11) : 1574 - 1593
  • [29] ANALYSIS OF CONVEXITY RESULTS FOR DISCRETE FRACTIONAL NABLA OPERATORS
    Dahal, Rajendra
    Goodrich, Christopher S.
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2021, 51 (06) : 1981 - 2001
  • [30] ANALYTICAL AND NUMERICAL MONOTONICITY RESULTS FOR DISCRETE FRACTIONAL SEQUENTIAL DIFFERENCES WITH NEGATIVE LOWER BOUND
    Goodrich, Christopher S.
    Lyons, Benjamin
    Velcsov, Mihaela T.
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2021, 20 (01) : 339 - 358