A computational framework for attentional object discovery in RGB-D videos

被引:0
|
作者
Germán Martín García
Mircea Pavel
Simone Frintrop
机构
[1] University of Bonn,Institute of Computer Science VI
[2] University of Hamburg,Computer Vision Group, Department of Informatics
来源
Cognitive Processing | 2017年 / 18卷
关键词
RGB-D object discovery; Computational visual attention; 3D inhibition of return;
D O I
暂无
中图分类号
学科分类号
摘要
We present a computational framework for attention-guided visual scene exploration in sequences of RGB-D data. For this, we propose a visual object candidate generation method to produce object hypotheses about the objects in the scene. An attention system is used to prioritise the processing of visual information by (1) localising candidate objects, and (2) integrating an inhibition of return (IOR) mechanism grounded in spatial coordinates. This spatial IOR mechanism naturally copes with camera motions and inhibits objects that have already been the target of attention. Our approach provides object candidates which can be processed by higher cognitive modules such as object recognition. Since objects are basic elements for many higher level tasks, our architecture can be used as a first layer in any cognitive system that aims at interpreting a stream of images. We show in the evaluation how our framework finds most of the objects in challenging real-world scenes.
引用
收藏
页码:169 / 182
页数:13
相关论文
共 50 条
  • [41] Object Learning for 6D Pose Estimation and Grasping from RGB-D Videos of In-hand Manipulation
    Patten, Timothy
    Park, Kiru
    Leitner, Markus
    Wolfram, Kevin
    Vincze, Markus
    2021 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2021, : 4831 - 4838
  • [42] Saliency-based Object Discovery on RGB-D Data with a Late-Fusion Approach
    Garcia, German M.
    Potapova, Ekaterina
    Werner, Thomas
    Zillich, Michael
    Vincze, Markus
    Frintrop, Simone
    2015 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2015, : 1866 - 1873
  • [43] A Multi-Modal RGB-D Object Recognizer
    Faeulhammer, Thomas
    Zillich, Michael
    Prankl, Johann
    Vincze, Markus
    2016 23RD INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2016, : 733 - 738
  • [44] RGB-D Object Classification Using Covariance Descriptors
    Fehr, Duc
    Beksi, William J.
    Zermas, Dimitris
    Papanikolopoulos, Nikolaos
    2014 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2014, : 5467 - 5472
  • [45] DVSOD: RGB-D Video Salient Object Detection
    Li, Jingjing
    Ji, Wei
    Wang, Size
    Li, Wenbo
    Cheng, Li
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,
  • [46] Review of local descriptor in RGB-D object recognition
    Rachmawati, Ema, 1600, Universitas Ahmad Dahlan (12):
  • [47] Holistic and local patch framework for 6D object pose estimation in RGB-D images
    Zhang, Haoruo
    Cao, Qixin
    COMPUTER VISION AND IMAGE UNDERSTANDING, 2019, 180 : 59 - 73
  • [48] Robust Object Tracking based on RGB-D Camera
    Qi, Wenjing
    Yang, Yinfei
    Yi, Meng
    Li, Yunfeng
    Pizlo, Zygmunt
    Latecki, Longin Jan
    2014 11TH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION (WCICA), 2014, : 2873 - 2878
  • [49] Application of Transfer Learning in RGB-D Object Recognition
    Kumar, Abhishek
    Shrivatsav, S. Nithin
    Subrahmanyam, G. R. K. S.
    Mishra, Deepak
    2016 INTERNATIONAL CONFERENCE ON ADVANCES IN COMPUTING, COMMUNICATIONS AND INFORMATICS (ICACCI), 2016, : 580 - 584
  • [50] RGB-D object pose estimation in unstructured environments
    Choi, Changhyun
    Christensen, Henrik I.
    ROBOTICS AND AUTONOMOUS SYSTEMS, 2016, 75 : 595 - 613